

ISO/IEC TR 29106

Edition 1.0 2007-11

TECHNICAL REPORT

Information technology – Generic cabling – Introduction to the MICE environmental classification

(https://standards.iteh.ai)
Document Preview

ISO/IEC TR 29106:2007

https://standards.iteh.ai/catalog/standards/iec/6fac5ebb-6cff-4df7-bd34-1523cfd8690a/iso-iec-tr-29106-2007

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2007 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Dogumont Provious

ISO/IEC TR 20106:2007

https://standards.iteh.ai/catalog/standards/iec/6fac5ebh-6cff-4df7-hd34-1523cfd8690a/iso-iec-tr-29106-2007

ISO/IEC TR 29106

Edition 1.0 2007-11

TECHNICAL REPORT

Information technology – Generic cabling – 1008
Introduction to the MICE environmental classification

Document Preview

ISO/IEC TR 29106:2007

https://standards.iteh.ai/catalog/standards/iec/6fac5ebh-6cff-4df7-hd34-1523cfd8690a/iso-iec-tr-29106-2007

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 35,200 ISBN 2-8318-9386-0

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

1	Scope	5		
2	Reference documents			
3	Terms, definitions and abbreviations			
	3.1 Terms and definitions	6		
	3.2 Abbreviations	6		
4	Application of environmental classification			
	4.1 MICE	6		
	4.2 Channel environment	6		
	4.3 Component selection	7		
5	MICE system	10		
	5.1 General	10		
	5.2 Mechanical environment	10		
	5.3 Ingress protection and climatic environment	11		
	5.4 Chemical environment			
	5.5 Electromagnetic environment	15		
Bib	liography(Intips://standards.iteln.ai)	16		
	ure 1 – Example of variation of the environment along an industrial premises			
	oling channel			
	ure 2 – The local environment			
//st Tal	andards.iteh.ai/catalog/standards/iec/6fac5ebb-6cff-4df7-bd34-1523cfd8690a/isoble 1 – Details of environmental classification	-iec-tr-29106- 8		
Tal	ble 2 – Derivation of boundaries for mechanical criteria in Table 1	10		
Tal	ble 3 – Derivation of boundaries for ingress protection criteria in Table 1	11		
	ble 4 – Derivation of boundaries for climatic criteria in Table 1			
	ble 5 – Derivation of boundaries for chemical criteria in Table 1			
	ble 6 – Derivation of boundaries for electromagnetic criteria in Table 1			

INFORMATION TECHNOLOGY – GENERIC CABLING – INTRODUCTION TO THE MICE ENVIRONMENTAL CLASSIFICATION

FOREWORD

- 1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards. Their preparation is entrusted to technical committees; any ISO and IEC member body interested in the subject dealt with may participate in this preparatory work. International governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.
- 2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
- 3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO member bodies.
- 4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.
- 6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for any equipment declared to be in conformity with an ISO/IEC publication.
- 7) All users should ensure that they have the latest edition of this publication.
- 8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.
- 9) Attention is drawn to the reference documents cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 10) Attention is drawn to the possibility that some of the elements of this Technical Report, type 3 may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC and ISO technical committees is to prepare International Standards. In exceptional circumstances, ISO/IEC JTC 1 or a subcommittee may propose the publication of a technical report of one of the following types:

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical development or where, for any other reason, there is the future but not immediate possibility of an agreement on an International Standard;
- type 3, when the technical committee has collected data of a different kind from that which is normally published as an International Standard, for example 'state of the art'.

ISO/IEC 29106, which is a Technical Report of type 3, has been prepared by subcommittee 25: Interconnection of information technology equipment, of ISO/IEC joint technical committee 1: Information technology.

Technical reports of types 1 and 2 are subject to review within three years of publication to decide whether they can be transformed into International Standards. Technical reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

This Technical Report of type 3 has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/IEC TR 29106:2007

https://standards.iteh.ai/catalog/standards/iec/6fac5ebh-6cff-4df7-hd34-1523cfd8690a/iso-iec-tr-29106-2007

INFORMATION TECHNOLOGY – GENERIC CABLING – INTRODUCTION TO THE MICE ENVIRONMENTAL CLASSIFICATION

1 Scope

This Technical Report acts as an introduction to the concepts used to develop the MICE environmental classification system used in cabling standards developed by ISO/IEC. It also provides detailed explanation of the sources used to define the boundaries of MICE classifications.

2 Reference documents

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 11801, Information technology – Generic cabling for customer premises

ISO/IEC 15018, Information technology – Generic cabling for homes

ISO/IEC 24702, Information technology – Generic cabling – Industrial premises

IEC 60068-2-5:1975, Environmental testing – Part 2: Tests. Test Sa: Simulated solar radiation at ground level

IEC 60654-4:1987 Operating conditions for industrial-process measurement and control equipment. Part 4: Corrosive and erosive influences

IEC 60721-1, Classification of environmental conditions – Part 1: Environmental parameters and their severities

IEC 60721-3-3, Classification of environmental conditions – Part 3-3: Classification of groups of environmental parameters and their severities - Stationary use at weatherprotected locations

IEC 61000-2-5, Electromagnetic compatibility (EMC) – Part 2: Environment – Section 5: Classification of electromagnetic environments. Basic EMC publication

IEC 61000-6-1, Electromagnetic compatibility (EMC) – Part 6-1: Generic standards – Immunity for residential, commercial and light-industrial environments

IEC 61000-6-2, Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity for industrial environments

IEC 61131-2, Programmable controllers – Part 2: Equipment requirements and tests

IEC 61326:2001, Electrical equipment for measurement, control and laboratory use – EMC requirements

IEC 61918, Industrial communication networks – Installation of communication networks in industrial premises

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this Technical Report the definitions of the applicable generic cabling standards ISO/IEC 11801, ISO/IEC 15018 and ISO/IEC 24702 apply.

3.2 Abbreviations

For the purposes of this Technical Report the abbreviations of the applicable generic cabling standards ISO/IEC 11801, ISO/IEC 15018 and ISO/IEC 24702 apply.

4 Application of environmental classification

4.1 MICE

The term MICE referenced in generic cabling standards produced by ISO/IEC1 relates to the classification of the environment of the cabling channel.

There are four primary environmental criteria used to classify an environment:

- the M element, defining the mechanical characteristics of the environment;
- the I element, defining the ingress protection characteristics of the environment;
- the C element, defining the climatic and chemical characteristics of the environment;
- the E element, defining the electromagnetic characteristics of the environment.

Each of the four primary environmental criteria are further divided into specific parameters and levels for those parameters. The MICE classification for a given location is therefore defined as $M_al_bC_cE_d$ where a, b, c and d are the individual sub-classifications (levels) for the M, I, C and E criteria respectively.

The suffixes for the four primary environmental criteria are either 1, 2 or 3. For example, the most benign environment is described as $M_1I_1C_1E_1$ whereas the most harsh environment within the scope of this standard would be defined as $M_3I_3C_3E_3$.

4.2 Channel environment

The applicable MICE classification may vary along the length of the cabling channel. As shown in the industrial premises cabling example of Figure 1, the ingress protection characteristics of the environment in the automation area and at the automation island are different from, and more severe than, those characteristics on the factory floor or in the telecommunications room.

¹ The documents prepared by subcommittee 25 of ISO/IEC joint technical committee 1: Information technology.

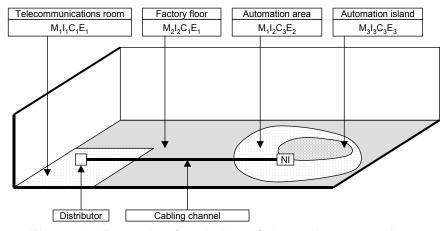


Figure 1 – Example of variation of the environment along an industrial premises cabling channel

The environment to be classified is that local to the cabling. Where no environmental protection is provided to the cabling, the classification of the local environment is also that of the overall environment at that location.

However, where technical or economic restrictions preclude the use of components compatible with the overall environment, mitigation or isolation techniques may be applied to modify one or more of the M, I, C or E environments local to the cabling in order to allow appropriate components to be installed.

The mitigation or isolation techniques typically involve the use of alternative pathways and/or pathway systems as shown in Figure 2.

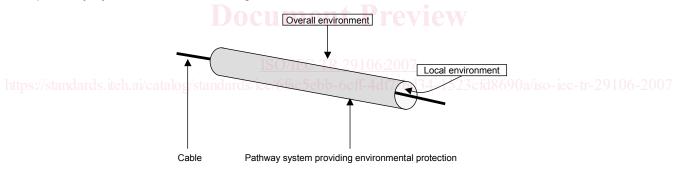


Figure 2 – The local environment

4.3 Component selection

The components used within a channel should be selected to be compatible with the MICE classification of the channel at the point where the components are to be installed.

Table 1, taken from ISO/IEC 24702:2006, shows the parameters used to classify the local environment under the M, I, C and E criteria. While the classification of an environment is determined by the most demanding parameter within each criteria group, the selection of components may reflect the specific demands of all the parameters within the group, including those that may be less demanding than the overall classification of the environment.

The MICE classification system is intended to address approximately 80 % of the environments to which cabling may be subjected. There are some environments beyond the boundaries of $M_3I_3C_3E_3$. Such environments are beyond the scope of this Technical Report and require special handling.

Table 1 - Details of environmental classification

	Mechanical	M ₁	M ₂	M ₃
	Shock/bump (see a))			
	Peak acceleration	40 ms ⁻²	100 ms ⁻²	250 ms ⁻²
	Vibration			
	Displacement amplitude (2 Hz to 9 Hz)	1,5 mm	7,0 mm	15,0 mm
	Acceleration amplitude (9 Hz to 500 Hz)	5 ms ⁻²	20 ms ⁻²	50 ms ⁻²
	Tensile force	See b)	See b)	See b)
	Crush	45 N over 25 mm (linear) min.	1 100 N over 150 mm (linear) min.	2 200 N over 150 mm (linear) min.
	Impact	1 J	10 J	30 J
	Bending, flexing and torsion	See b)	See b)	See b)
	Ingress	l ₁	l ₂	I ₃
	Particulate ingress (dia. max.)	12,5 mm	50 μm	50 μm
	Immersion	None Teh Stand	Intermittent liquid jet ≤ 12,5 l/min ≥ 6,3 mm jet > 2,5 m distance	Intermittent liquid jet ≤12,5 l/min ≥6,3 mm jet >2,5 m distance and immersion (≤1 m for <=30 minutes)
	Climatic and chemical	, c ₁	c ₂	c ₃
	Ambient temperature	-10 °C to +60 °C	-25 °C to +70 °C	-40 °C to +70 °C
	Rate of change of temperature	0,1 °C per minute	1,0 °C per minute	3,0 °C per minute
	Humidity	5 % to 85 % (non-condensing)	5 % to 95 % (condensing)	5 % to 95 % (condensing)
	Solar radiation	IS 700 Wm ⁻² R 2910	1 120 Wm ⁻²	1 120 Wm ⁻²
ittp	Liquid pollution (see c)) a log/stanc Contaminants	Concentration × 10 ⁻⁶	Concentration × 10 ⁻⁶	Concentration × 10 ⁻⁶
	Sodium chloride (salt/sea water)	0	<0,3	<0,3
	Oil (dry-air concentration) (for oil types see b))	0	<0,005	<0,5
	Sodium stearate (soap)	None	>5 × 10 ⁴ aqueous non- gelling	>5 × 10 ⁴ aqueous gelling
	Detergent	None	ffs	ffs
	Conductive materials	None	Temporary	Present
	Gaseous pollution (see b)) Contaminants	Mean/Peak (Concentration × 10 ⁻⁶)	Mean/Peak (Concentration × 10 ⁻⁶)	Mean/Peak (Concentration × 10 ⁻⁶)
	Hydrogen sulphide	<0,003/<0,01	<0,05/<0,5	<10/<50
	Sulphur dioxide	<0,01/<0,03	<0,1/<0,3	<5/<15
	Sulphur trioxide (ffs)	<0,01/<0,03	<0,1/<0,3	<5/<15

a) Bump: the repetitive nature of the shock experienced by the channel shall be taken into account.

b) This aspect of environmental classification is installation-specific and should be considered in association with IEC 61918 and the appropriate component specification.

c) A single dimensional characteristic, i.e. Concentration \times 10⁻⁶, was chosen to unify limits from different standards.