INTERNATIONAL STANDARD

ISO 9013

First edition 1992-09-15

Welding and allied processes - Quality classification and dimensional tolerances of thermally cut (oxygen/fuel gas flame) surfaces

iTeh STANDARD PREVIEW Soudage et techniques connexes – Niveaux de qualité et tolérances dimensionnelles des surfaces découpées thermiquement (à la flamme d'oxygène/gaz de chauffe)

ISO 9013:1992 https://standards.iteh.ai/catalog/standards/sist/8b97280f-8c53-4f9c-8779-12d002ef1a01/iso-9013-1992

Reference number ISO 9013:1992(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

International Standard ISO 9013 was prepared by Technical Committee ISO/TC 44, Welding and allied processes, Sub-Committee SC 8, Gas welding equipment. ISO 9013:1992

Annex A of this International Standards iteh ai/catalog/standards/sist/8b97280f-8c53-4f9c-8779-12d0/2ef1a01/iso-9013-1992

© ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Welding and allied processes — Quality classification and dimensional tolerances of thermally cut (oxygen/fuel gas flame) surfaces

1 Scope

This International Standard is valid for materials suitable for oxygen cutting and for workpiece thicknesses from 3 mm to 300 mm. It applies to cut metal surfaces produced by oxygen/fuel gas flame cutting and requires quality classification and dimensional tolerances.

dards are subject to revision, and parties to

agreements based on this International Standard are encouraged to investigate the possibility of ap-

plying the most recent editions of the standards in-

dicated below. Members of IEC and ISO maintain

registers of currently valid International Standards.

ISO 1302:1978, Technical drawings - Method of in-

ISO 4287-1:--1, Surface roughness - Terminology ---

ISO 8015:1985, Technical drawings - Fundamental

Oxygen cutting refers to those thermal cutting processes in which the cutting kerf is created such that

dicating surface texture on drawings.

Part 1: Surface and its parameters.

tolerancing principle.

3.1 Process

3

Basis of process

2 Normative references

temperature shall be below the melting temperature The following standards contain provisions which, through reference in this text, constitute provisions 9013:1002 the material. Cutting slag shall be liquid enough of this International Standard/sAtt the time of the stime of the dubiandards/to be drivers out of the cutting kerf by the oxygen jet. cation, the editions indicated were valid.1AID stane01/iso-9013-1992

3.3 Material

The prerequisites given in 3.2 are fulfilled by pure iron, low-alloyed and some alloyed steels as well as by titanium and some titanium alloys. The cutting process is detrimentally affected by alloying elements, except manganese, and increasingly so with increasing content of the alloying element e.g. chromium, carbon, molybdenum or silicon. Therefore, among others, high-alloyed CrNi-steels or silicon steels and cast iron cannot be oxygen cut without special steps. These materials can be cut with other thermal cutting processes, e.g. by metal powder oxygen cutting or plasma arc cutting.

4 Designation

The designation of a flame cut surface shall comprise the following information in the order given:

- a) description block, e.g. "flame cut";
- b) a reference to this International Standard;

- the material in the kerf is primarily oxidized;

iTeh STANDAR

oxidized products are driven out of the kerf by a high velocity oxygen jet.

3.2 Prerequisites

The material shall be heated at the point of reaction to a temperature at which it reacts spontaneously with oxygen (ignition temperature). The process shall deliver sufficient thermal energy such that (standards.areas of the material in the cutting direction are heated up to this ignition temperature. The ignition

¹⁾ To be published. (Revision of ISO 4287-1:1984)

- c) the indication of quality containing perpendicularity and angularity tolerance and permissible ten point height of irregularity according to 5.1 or 5.2;
- d) the indication of tolerance class according to clause 6.

EXAMPLE

An oxygen flame cut surface with quality I and tolerance class A is designated as follows:

Flame cut ISO 9013 - IA

Drag, n, is the projected distance between the two edges of a drag line in the direction of cutting (see figure 4).

Figure 1 — Perpendicularity tolerance

5 Quality of flame cut edge (face)

5.1 Factors and explanations

For the classification of quality of flame cut edges (faces), the following factors are used:

- a) perpendicularity tolerance, *u* (see figure 1) or DARD angularity tolerance, *u* (see figure 2);
- b) ten point height of irregularities, R_{y5} (see figure 3).

The following factors may be used for visual evaluation:

- c) drag, *n* (see figure 4);
- d) melting of top edge, r (see figure 5).

Perpendicularity or angularity tolerance, u, is the distance between two parallel straight lines (contacting lines) that limit the cut face profile at the theoretically correct angle (i.e. at 90° for square edge cuts).

The contacting lines are situated in a plane normal to both the workpiece surface and to the cut face.

The perpendicularity tolerance and the angularity tolerance include deviations from straightness and flatness.

Ten point height of irregularities, R_{y5} , is the mean of the absolute values of the heights of the five highest profile peaks and the depths of the five deepest profile valleys within the sampling length (from ISO 4287-1).

KEY

ISO 9013:1992

- $l_{\rm n}$ is the roughness sampling length
- Z_1 to Z_5 are individual profile departures
- $l_{\rm e}$ is the individual sampling length (one fifth of $l_{\rm n}$)

Figure 4 — Drag line

Melting of the top edge, r, is the factor characterizing the shape of the top edge of a cut, such as a sharp edge, a rounded edge with overhang or a train of fused beads with overhang (see figure 5)

Table 1 — Values of Δa for various cutting thicknesses, a

or labea beads h	nai overnang (see ligure oj.	_		Dimensions in minimetres
				Cutting thickness, <i>a</i>	Δa
S /			/ [$3 \leqslant a \leqslant 6$	0,3
		[e	NDAR	PREASIEW	0,6
			Idards	10 < <i>a</i> ≤ 20	1,0
				$20 < a \le 40$	1,5
a)	b)	c) standards iteh ai/cat	ISO 9013:19 alog/standards/s	$\frac{92}{10} 40 < a \le 100$ $\frac{100}{100} = 100$	2,0
Figure 5 — Melting of top edge $12d002efla01/iso-2013-19100 < a \le 150$					3,0
			ſ	$150 < a \leq 200$	5,0
The cut face profile used for the definition of per- pendicularity tolerance and angularity tolerance shall be reduced by the value of Δa as given in				$200 < a \le 250$	8,0
				$250 < a \leq 300$	10,0

Å۵ Reduced cut face profile used for the definition of the perpendicularity and angularity tolerances Δ۵

table 1 from both the top and the bottom of the cut

face (see figure 6).

Individual defects, e.g. gougings, are not considered for the definition of quality grades in this International Standard.

In the case of multiple bevel cutting, e.g. for single-V, double-V, or double bevel cuts or K-cuts, each cutting surface is to be classified separately.

For a classification of the quality of cut surfaces in accordance with table 2, the reduction of the profile for the perpendicularity and angularity tolerance uand for the permissable ten point height of irregularities R_{v5} as described above is not necessary. The definition, however, has been maintained to point out the possibility of achieving these very small deviations and also in order to demonstrate the capabilities of the process.

5.2 Quality of cut surfaces

The cut surfaces are classified as either quality I or quality II in accordance with table 2. The perpendicularity and angularity tolerance, u, and the ten point height of irregularities, R_{y5} , are given as functions of cutting thickness, a, in figures 7 and 8. Enlarged projections of u and R_{y5} for cutting thicknesses up to 20 mm are given in figures A.1 and A.2 (see annex A).

5.3 Agreed-upon quality

Following prior agreement or in order to take application conditions into consideration one may deviate from quality classifications I and II. To describe the agreed-upon quality, the fields for the perpendicularity and angularity tolerance, u, and the ten point height of irregularities, R_{y5} , are to be laid down in the sequence u, R_{y5} . In cases where no value for the field is to be specified, insert "0" (zero).

EXAMPLE 1 Field 1 for uField 1 for R_{y5} Code: 11 EXAMPLE 2 Field 2 for u0 for R_{y5} (i.e. no value specified) Code: 20

Quality classification of cut surface	Perpendicularity and angularity tolerance, u, in accordance with figure 7Ten point height of irregularities, R_{y5} , in accordance with figure 8						
I	iTeh Fields 1 and 2 DARD PREVIEV Fields 1 and 2						
II	Fields ato stards.iteh.ai) Fields 1 to 3						
Perpendicularity and angularity to talerance, u (mm) 70 1 2 2 4 5 9 9 1 9 2 9	ISO 9013:1992 https://standards.iteh.ai/catalog/standards/sist/8b97280f-8c53-4f9c-8779- 12d002cf1 a01/iso-9013-1992 5.5 3.4 2.2						
V 5 20	40 80 80 100 120 140 180 180 200 220 240 280 280 300 Cutting thickness, a (mm)						
Field 1							

Table 2 — Quality classifications

6 Dimensional tolerances

Dimensions shown in drawings are nominal dimensions. The actual dimensions are to be measured on cleaned cutting surfaces. The limit deviations given in tables 3 and 4 are valid for dimensions without a tolerance indication when drawings or other documents (e.g. delivery conditions) refer to this International Standard. Limit deviations in table 3 are only valid for the workpiece thicknesses given in the table and on parts on which the ratio of length to width is no more than 4:1 and for which the minimum total circumference is 350 mm.

For workpieces where the ratio between length and width is more than 4:1, the tolerances have to be

agreed upon between manufacturer and user in accordance with this International Standard.

The given limit deviations are based on the principle of independency specified in ISO 8015, in which the dimensional and geometrical tolerances are valid independently of each other. The part of the tolerance caused by perpendicularity and angularity deviations in the direction of the cutting jet shall be within the limit deviations. If other dimensional and geometrical tolerances, e.g. straightness tolerance or perpendicularity tolerance in cutting longitudinal direction, should be maintained, a particular agreement shall be reached.

For parallel straight line cuts with perpendicular cut surfaces being cut simultaneously, the limit deviations of table 4 are valid.

Figure 8 — Permissible ten point height of irregularities, R_{y5}

Tolerance class	Workpiece thickness, <i>t</i>	35 up to 315	Limit deviations for 315 up to 1 000	nominal dimensions 1 000 up to 2 000	2 000 up to 4 000
A	3 < <i>t</i> ≤ 12	± 1,0	<u>+</u> 1,5	± 2,0	± 3,0
	$12 < t \leq 50$	<u>+</u> 0,5	± 1,0	± 1,5	± 2,0
	50 < <i>t</i> ≤ 100	<u>+</u> 1,0	± 2,0	<u>+</u> 2,5	± 3,0
	100 < <i>t</i> ≤ 150	± 2,0	<u>+</u> 2,5	± 3,0	± 4,0
	$150 < t \le 200$	<u>+</u> 2,5	± 3,0	<u>+</u> 3,5	<u>+</u> 4,5
	$200 < t \leq 250$		<u>+</u> 3,0	<u>+</u> 3,5	± 4,5
	$250 < t \le 300$		<u>+</u> 4,0	<u>+</u> 5,0	± 6,0
В	$3 < t \leq 12$	<u>+</u> 2,0	<u>+</u> 3,5	<u>+</u> 4,5	<u>+</u> 5,0
	$12 < t \leq 50$	± 1,5	<u>+</u> 2,5	<u>+</u> 3,0	<u>+</u> 3,5
	50 < <i>t</i> ≤ 100	iTeħ²ŜTAI	NDARD PR	EVIE ^{4.0} W	± 4,5
	100 < <i>t</i> ≤ 150	^{± 3,0} (stan	darđś?iteh.	ai) ± 5,0	<u>+</u> 6,0
	$150 < t \leq 200$	± 3,0	<u>+</u> 4,5 ISO 9013:1992	<u>+</u> 6,0	<u>+</u> 7,0
	$200 < t \le 250$ h	tps://standa rd s.iteh.ai/cat 12d0	alog/stand <u>a</u> rds, 5 ist/8b972 02ef1a01/iso-9013-1992	80f-8c53- <u>4</u> f 6 ;08779-	± 7,0
	$250 < t \leqslant 300$	·	± 5,0	<u>+</u> 7,0	± 8,0

Table 3 — Limit deviations for nominal dimensions

Dimensions in millimetres

Table 4 — Limit deviations for simultaneously-cut parallel straight line cuts

Dimensions in millimetres

Tolerance class	Workpiece thickness, <i>t</i>	Limit deviations for nominal dimensions up to 10 000
F	10 <i>< t</i> ≤ 100	± 0,2
G	6 < <i>t</i> ≤ 100	± 0,5
Н	6 < <i>t</i> ≤ 100	± 1,5

.

- 1 Reference to this International (Standard i.e. ds. iteh.ai) Figure 11 ISO 9013
- 2 Quality classification in accordance <u>with</u>013:1992 clause 5 https://standards.itch.ai/catalog/standards/sizt/1297?Representation7in the title block of technical
- 3 Tolerance class in accordance with clause²6^{f1a01/iso-9}documents

Figure 9 — Representation on technical drawings

Information in technical documents

7

When agreed-upon deviations from this International Standard are desired, this has to be indicated specifically (see also 5.3).

The required quality classification and tolerance class together with a reference to this International Standard shall be given as follows:

Quality classification I and tolerance class A are required. The representation is shown in figure 10.

EXAMPLE

EXAMPLE 1

Quality classification II and tolerance class G are required.

ISO 9013 - IIG