INTERNATIONAL STANDARD

First edition 1994-07-15

Optics and optical instruments — Environmental test methods —

iTeh Scold, heat, humidity (standards.iteh.ai)

Optique <u>Cinstruments</u> d'optique — Méthodes d'essais https://standards.itd/environgementds/sist/bd2e28c1-1f7a-4d11-b47d-Partie 2: Froid, chaleur, humidité

Reference number ISO 9022-2:1994(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

International Standard ISO 9022-2 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 1, Fundamental standards.

https://standards.iteh.ai/catalog/standards/sist/bd2e28c1-1f7a-4d11-b47d-ISO 9022 consists of the following parts, under the general title Optics and optical instruments — Environmental test methods:

- Part 1: Definitions, extent of testing
- Part 2: Cold, heat, humidity
- Part 3: Mechanical stress
- Part 4: Salt mist
- Part 5: Combined cold, low air pressure
- Part 6: Dust
- Part 7: Drip, rain
- Part 8: High pressure, low pressure, immersion
- Part 9: Solar radiation
- Part 10: Combined sinusoidal vibration, dry heat or cold

© ISO 1994

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

- Part 11: Mould growth
- Part 12: Contamination
- Part 13: Combined shock, bump or free fall, dry heat or cold
- Part 14: Dew, hoarfrost, ice
- Part 15: Combined random vibration wide band: reproducibility medium, in dry heat or cold
- Part 16: Combined bounce or steady-state acceleration, in dry heat or cold
- Part 17: Combined contamination, solar radiation
- Part 18: Combined damp heat and low internal pressure
- Part 19: Temperature cycles combined with sinusoidal or random vibration
- Part 20: Humid atmosphere containing sulfur dioxide or hydrogen sulfide

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9022-2:1994</u> https://standards.iteh.ai/catalog/standards/sist/bd2e28c1-1f7a-4d11-b47d-9f8568413743/iso-9022-2-1994

Introduction

Optical instruments are affected during their use by a number of different environmental parameters which they are required to resist without significant reduction in performance.

The type and severity of these parameters depend on the conditions of use of the instrument (for example, in the laboratory or workshop) and on its geographical location. The environmental effects on optical instrument performance in the tropics and subtropics are totally different from those found when they are used in the arctic regions. Individual parameters cause a variety of different and overlapping effects on instrument performance.

The manufacturer attempts to ensure, and the user naturally expects, that instruments will resist the likely rigours of their environment throughout VIEW their life. This expectation can be assessed by exposure of the instrument to a range of simulated environmental parameters under controlled laboratory conditions. The severity of these conditions is often increased to obtain meaningful results in a relatively short period of time, 2,1004

In order to allow assessment and comparison of the response of optical-1f7a-4d11-b47dinstruments to appropriate environmental conditions, ISO 9022 contains details of a number of laboratory tests which reliably simulate a variety of different environments. The tests are based largely on IEC standards, modified where necessary to take into account features special to optical instruments.

It should be noted that, as a result of continuous progress in all fields, optical instruments are no longer only precision-engineered optical products, but, depending on their range of application, also contain additional assemblies from other fields. For this reason, the principal function of the instrument must be assessed to determine which International Standard should be used for testing. If the optical function is of primary importance, then ISO 9022 is applicable, but if other functions take precedence then the appropriate International Standard in the field concerned should be applied. Cases may arise where application of both ISO 9022 and other appropriate International Standards will be necessary.

Optics and optical instruments — Environmental test methods —

Part 2:

Cold, heat, humidity

1 Scope

3 General information and test

This part of ISO 9022 specifies methods for the testing of optical instruments and instruments containing (S. The specimen is exposed to climatic stress in conoptical components, under equivalent conditions, for ditioning chambers or cabinets providing air circutheir ability to resist temperature and air humidity, and an and air humidity.

The purpose of testing is to investigate to what extent the optical, thermal, mechanical, chemical and electrical performance characteristics of the specimen are affected by temperature and/or humidity.

'eh

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 9022. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 9022 are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 9022-1:1994¹), Optics and optical instruments — Environmental test methods — Part 1: Definitions, extent of testing. Where heat-dissipating specimens are involved, the relevant specification shall state the number, method of installation and location of the heat sensors.

WARNING — Persons entering test chambers with dew point temperatures of equal to or greater than 38 °C must be equipped with breathing apparatus (e.g. conditioning methods 12, 13 and 16).

4 Conditioning

The required exposure time shall not commence until all parts of the specimen have reached a temperature within at least 3 K of the test chamber temperature. For heat-dissipating specimens, the period of exposure or dwell time (conditioning methods 14 and 15) shall not begin, or end, until the temperature of the specimen changes not more than 1 K within 1 h at the stabilized test chamber temperature. The last

The size of the specimens and their arrangement shall be such as to ensure a uniform conditioning of all specimens. Where moisture condensation is likely to occur, the condensate shall be prevented from dripping onto the specimen.

¹⁾ To be published.

hour of the temperature soaking time shall be considered to be the first hour of the exposure period.

4.1 Constant stress conditions

During exposure to constant stress conditions, the temperature shall be changed sufficiently slowly to prevent the specimen from being damaged. When testing to conditioning methods 11 and 12, the maximum relative humidity also applied to the temperature change phase. The relevant specification shall state whether condensation of dew on the specimen is acceptable.

4.1.1 Conditioning method 10: Cold

See table 1.

4.1.2 Conditioning method 11: Dry heat

See table 2.

4.1.3 Conditioning method 12: Damp heat iTeh STANDA iso 9022-1. EVIEW

See table 3.

(standardsainele.ai) 4.1.4 Conditioning method 13: Condensed water

See table 4.

ISO 902 The environmental test of optical instruments for rehttps://standards.iteh.ai/catalog/standasistance_to_slow_temperature change, in accordance 9f8568413743/with conditioning method 14, degree of severity 02.

4.2 Cycling exposure conditions

When applying conditioning methods 14 and 15, the specimens shall have reached a temperature at least within 3 K of the test chamber temperatures t_1 and t_2 not later than at the end of the dwell times shown in the respective tables. If the requirement cannot be met, owing to large-sized specimens, a pretest may be performed to determine the dwell times required.

When applying conditioning method 15 intermediate sotrage (e.g. overnight) will be acceptable at t_2 only.

4.2.1 Conditioning method 14: Slow temperature change

See table 5 and figure 1.

4.2.2 Conditioning method 15: Rapid temperature change (temperature shock)

See table 6 and figure 2.

4.2.3 Conditioning method 16: Damp heat, cyclic

See table 7.

state of operation 1, shall be identified as:

Environmental test ISO 9022-14-02-1

7 Specification

The relevant specification shall contain the following details:

- a) environmental test code;
- b) number of specimens;
- c) number, location and method of installation of the temperature sensors required for heat-active specimens;
- d) conditioning method 10: justification of state of operation 2 at degree of severity 09 or 10. Determination of additional requirements for testing a cold specimen in an open cold chamber or outside the cold chamber and for protecting the specimen against hoarfrost or bedewing;
- e) conditioning method 12: acceptability of dew condensation:

The cycling curve for degrees of severity 01 to 03 is shown in figure 3: curves for degrees of severity 04 to 06 are shown in figure 4.

5 Procedure

5.1 General

The test shall be conducted in accordance with the requirements of the relevant specification and with ISO 9022-1.

5.2 Pretest

For conditioning methods 14 and 15, the dwell times for large-sized specimens shall be determined in a pretest and documented in the test report.

6 Environmental test code

- f) conditioning method 14, degrees of severity 04 to 09: justification of state of operation 2 if that state of operation is required;
- g) conditioning method 15: the time of temperature change actually required for specimens beyond 10 kg mass shall be stated in the test report; justification of state of operation 2 at all degrees of severity;
- h) conditioning method 16, degrees of severity 04 to 06: relative humidity values other than those shown in figure 4 shall be specified;
- i) preconditioning;

- j) type and scope of initial test;
- k) state of operation 2: period of operation;
- I) state of operation 2: type and scope of intermediate test;
- m) recovery;
- n) type and scope of final test;
- o) criteria of evaluation:
- p) type and scope of test report.

Table 1 — Degrees of severity for conditioning	method 10: Cold
--	-----------------

Degree of severity		01	02	03	04	05	06	07	08	09	10
Test chamber tem- perature	۰C	-0±3	– 10 ± 3	– 15 ± 3	- 20 ± 3	– 25 ± 3	- 30 ± 3	- 35 ± 3	- 40 ± 3	– 55 ± 3	- 65 ± 3
Exposure time	h	16									
State of operation		0 or 1 or 2 1) 0 or 1								0 or 1	
1) When testing to degree of severity 09 is required, state of operation 2 should be justified in the relevant specification											

ITEN STANDARD PREVIEW

(standards.iteh.ai) Table 2 — Degrees of severity for conditioning method 11: Dry heat

Degree of severity		01	ISC	9022 02 :1994	03	04	05	06			
Test chamber temperature	https://stendards	.iteh.to/ent	2 log/s	tand40d <u>+</u> /sist/bo	2e2 55 1±1 2 7a-4	d11 634<u>7</u>d2	70 ± 2	85 ± 2			
Relative humidity	%	91856	918568413743/iso-9022-2-1994 < 4 0								
Exposure time	h			16 6							
State of operation		0 or 1 or 2					0 or 1				

Table 3 — Degrees of severity for conditioning method 12: Damp heat

Degree of severity	01	02	03	04	05	06	07		
Climatic conditions		40 °C ± 2 °C and 90 % to 95 % r.h. 55 °C ± 2 °C and 95 % r.h. 95 % r.h.							
Exposure time	16 h	4 d	10 d	21 d	56 d	6 h	16 h		
State of operation	0 or 1 or 2 ¹⁾								
1) State of operation 2 during the last 4 h of exposure only.									

Table 4 — Degrees of severity for conditioning method 13: Condensed water

Degree of severity	01	02	03	04	05	06				
Climatic conditions	40 °C \pm 2 °C and approximately 100 % relative humidity, including bedewing of specimens.									
Exposure time	6 h	16 h	2 d	4 d	8 d	16 d				
State of operation	0 or 1 or 2 ¹)									
1) State of operation 2 during the last 4 h of exposure only.										

Degree of severity			01	02	03	04	05	06	07	08	09	
Test chamber temperature	•^	t ₂	40 ± 2	55 ± 2	70 ± 2	55 ± 2	63 ± 2	70 ± 2	70 ± 2	70 ± 2	85 ± 2	
	C	<i>t</i> ₁	- 10 ± 3	- 25 ± 3	– 25 ± 3	- 40 ± 3	- 35 ± 3	- 40 ± 3	- 50 ± 3	- 65 ± 3	- 65 ± 3	
Temperature difference		к	50	80	95	95	98	110	120	135	150	
Number of cycles			5									
Dwall time at t ₁ and t ₂ Until specimen has less than 2,5 h. For heat-dissipating					Intil specimen has reached a temperature at least within 3 K of the test chamber temperature but not sss than 2,5 h. For heat-dissipating specimens, refer the first paragraph of clause 4.							
Test chamber temperature change ra	te		Between	0,2 K/min a	nd 2 K/min.							
State of operation 0 or 1 or 2 1)												
1) When testing to degrees of severit	y 0,4 to	0,9 sta	ate of operat	tion 2 should	d be justified	d in the rele	vant specific	ation.				

Table 5 — Degrees	of severity for	conditioning	method 1	4: Slow	temperature	change
-------------------	-----------------	--------------	----------	---------	-------------	--------

1) When testing to degrees of severity 0,4 to 0,9 state of operation 2 should be justified in the relevant specification.

Figure 1 — Cycling curve for conditioning method 14 (slow temperature change)

Degree of severity		01	02	03	04	05		
Test chamber temperature	°C	20 ± 2	40 ± 2	55 ± 2	70 ± 2	70 ± 2		
	t_1	- 10 ± 2	- 25 ± 2	-40 ± 3	- 55 ± 3	- 65 ± 3		
Temperature difference	К	30	65	95	125	135		
Number of cycles		5						
Dwell time at t_1 and t_2	Until specimen has reached a temperature at least within 3 K of the test chamber temperature but not less than 2,5 h. For heat- dissipating specimens, refer to clause 4.							
Time allowed for temperature change Max. 20 s for equipment of up to 10 kg; beyond 10 kg as possible but not more than 10 min. The time actually tak be documented in the test report.						as short as aken should		
State of operation 0 or 1 or 2 1)								
1) State of operation 2 should be justified in the relevant specification.								

Table 6 — Degrees of severity for conditioning method 15: Temperature shock

Figure 2 — Cycling curve for conditioning method 15 (temperature shock)