INTERNATIONAL STANDARD

ISO 9022-3

> First edition 1994-07-15

Optics and optical instruments — Environmental test methods —

Part 3:

iTeh SMechanical stressEVIEW

(standards.iteh.ai)

Optique et instruments d'optique — Méthodes d'essais d'environnement3.1994

https://standards.it/partiests/controller/sist/030557ide 182f-43fc-9b93-

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75.% of the member bodies casting a vote.

International Standard ISO 9022-3 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 1, Fundamental standards.

ISO 9022 consists of the following parts, under the general title Optics and 82f-43fc-9b93-optical instruments — Environmental test methods: 457/iso-9022-3-1994

- Part 1: Definitions, extent of testing
- Part 2: Cold, heat, humidity
- Part 3: Mechanical stress
- Part 4: Salt mist
- Part 5: Combined cold, low air pressure
- Part 6: Dust
- Part 7: Drip, rain
- Part 8: High pressure, low pressure, immersion
- Part 9: Solar radiation
- Part 10: Combined sinusoidal vibration, dry heat or cold

© ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

- Part 11: Mould growth
- Part 12: Contamination
- Part 13: Combined shock, bump or free fall, dry heat or cold
- Part 14: Dew, hoarfrost, ice
- Part 15: Combined random vibration wide band: reproducibility medium, in dry heat or cold
- Part 16: Combined bounce or steady-state acceleration, in dry heat or cold
- Part 17: Combined contamination, solar radiation
- Part 18: Combined damp heat and low internal pressure
- Part 19: Temperature cycles combined with sinusoidal or random vibration
- Part 20: Humid atmosphere containing sulfur dioxide or hydrogen sulfide

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9022-3:1994 https://standards.iteh.ai/catalog/standards/sist/e305574e-182f-43fc-9b93-9bcd52b0f457/iso-9022-3-1994

Introduction

Optical instruments are affected during their use by a number of different environmental parameters which they are required to resist without significant reduction in performance.

The type and severity of these parameters depend on the conditions of use of the instrument (for example, in the laboratory or workshop) and on its geographical location. The environmental effects on optical instrument performance in the tropics and subtropics are totally different from those found when they are used in the arctic regions. Individual parameters cause a variety of different and overlapping effects on instrument performance.

The manufacturer attempts to ensure, and the user naturally expects, that instruments will resist the likely rigours of their environment throughout their life. This expectation can be assessed by exposure of the instrument to a range of simulated environmental parameters under controlled laboratory conditions. The severity of these conditions is often increased to obtain meaningful results in a relatively short period of time.

In order to allow assessment and comparison of the response of optical instruments to appropriate environmental conditions, ISO 9022 contains 82f-43fc-9b93-details of a number of laboratory tests which reliably simulate a variety of different environments. The tests are based largely on IEC standards, modified where necessary to take into account features special to optical instruments.

It should be noted that, as a result of continuous progress in all fields, optical instruments are no longer only precision-engineered optical products, but, depending on their range of application, also contain additional assemblies from other fields. For this reason, the principal function of the instrument must be assessed to determine which International Standard should be used for testing. If the optical function is of primary importance, then ISO 9022 is applicable, but if other functions take precedence then the appropriate International Standard in the field concerned should be applied. Cases may arise where application of both ISO 9022 and other appropriate International Standards will be necessary.

Optics and optical instruments — Environmental test methods —

Part 3:

Mechanical stress

1 Scope

This part of ISO 9022 specifies methods for the testing of optical instruments and instruments containing optical components, under equivalent conditions, for their ability to resist mechanical stress. Standards

The purpose of testing is to investigate to what extent IEC 68-2-29:1987, Environment of the optical, thermal, mechanical, chemical and ledee922-3:198sts — Test Eb and guitarical performance characteristics of the specimen/are dards/sist/e305574e-182f-43fc-993-affected by mechanical stress.

9bcd52b0f457/iso-90fEC 68-2-31:1987, Environment of the specimen/are dards/sist/e305574e-182f-43fc-993-affected by mechanical stress.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 9022. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 9022 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 9022-1:1994¹⁾, Optics and optical instruments — Environmental test methods — Part 1: Definitions, extent of testing.

IEC 68-2-6:1985, Environmental testing — Part 2: Tests — Test Fc and guidance: Vibration (sinusoidal).

IEC 68-2-7:1983, Environmental testing — Part 2: Tests — Test Ga and guidance: Acceleration, steady state.

IEC 68-2-27:1987, Environmental testing — Part 2: Tests — Test Ea and guidance: Shock.

IEC 68-2-29:1987, Environmental testing — Part 2: 3:1 Tests — Test Eb and guidance: Bump.

9bcd52b0f457/iso-901EC 68-2-31:1969, Environmental testing — Part 2: Tests — Test Ec: Drop and topple, primarily for equipment-type specimens.

IEC 68-2-32:1975, Environmental testing — Part 2: Tests — Test Ed: Free fall.

IEC 68-2-34:1973, Environmental testing — Part 2: Tests — Test Fd: Random vibration wide band — General requirements.

IEC 68-2-36:1973, Environmental testing — Part 2: Tests — Test Fdb: Random vibration wide band — Reproducibility medium.

IEC 68-2-47:1982, Environmental testing — Part 2: Tests — Mounting of components, equipment and other articles for dynamic tests including shock (Ea), bump (Eb), vibration (Fc and Fd) and steady-state acceleration (Ga) and guidance.

IEC 68-2-55:1987, Environmental testing — Part 2: Tests — Test Ee and guidance: Bounce.

¹⁾ To be published.

3 General information and test conditions

The test shall be carried out at ambient atmospheric conditions and in accordance with ISO 9022-1 and with the standards listed in table 1. The specimens shall be mounted on the test apparatus (shock machine, acceleration facility, or electrodynamic shaker) in accordance with IEC 68-2-47.

For the purposes of this International Standard, the acceleration of free fall shall be taken as $g = 9.81 \text{ m} \cdot \text{s}^2$.

4 Conditioning

4.1 Conditioning method 30: Shock

See table 2.

When testing optical instruments, a half sine shock pulse shall be applied. The specimen shall be subjected to three shocks in each direction along each axis.

Table 1 — Conditioning methods and applicable standards for testing

	standards for testing	
Subclause	Conditioning methods	Standards
4.1	30: Shock	IEC 68-2-27
4.2	31: Bump	IEC 68-2-29 and amend- ment No. 1
4.3	32: Drop and topple	IEC 68-2-31 and amend- ment No. 1
4.4	33: Free fall	IEC 68-2-32 and amend- ment No. 1
4.5	34: Bounce	IEC 68-2-55
4.6	35: Steady-state acceleration	IEC 68-2-7
4.7	36: Sinusoidal vibration	IEC 68-2-6 and amend- ments No. 1 and No. 2
4.8	37: Random vibration (wide band), reproducibility: medium	IEC 68-2-34 and amend- ment No. 1 IEC 68-2-36 and amend-
D PRE	VIEW.	ment No.1

4.2 Conditioning method 31: Bump PREVIEV

See table 3.

ISO 9022-3:1994

(standards.iteh.ai)

Table 2 Degrees of severity for conditioning method 30: Shock

Degree of severity		01	02	03	04	05	06	07	08 1)
Assolauation amplitude	m·s−²	98	147	294	294	490	490	981	4 900
Acceleration amplitude	g multiples	10	15	30	30	50	50	100	500
Duration of nominal shock	ms	6	11	6	18	3	11	6	1
State of operation					0 or	1 or 2			

NOTE — Degrees of severity in boldface shall be given preference.

Table 3 — Degrees of severity for conditioning method 31: Bump

Degree of severity		01	02	03	04	05	06	. 07	08
Acceleration amplitude	m·s−²	98	98	98	98	245	245	392	392
Acceleration amplitude	g multiples	10	10	10	10	25	25	40	40
Duration of nominal shock	ms	6	6	16	16	6	. 6	6	6
Number of shocks in each direction along each axis	± 1 %	1 000	4 000	1 000	4 000	1 000	4 000	1 000	4 000
State of operation					0 or 1	1 or 2		I	1

¹⁾ Applicable to testing of components and assemblies. Complete optical instruments should be subjected to 500g acceleration and shocks of 0,5 ms duration.

4.3 Conditioning method 32: Drop and topple

See table 4.

4.4 Conditioning method 33: Free fall

See table 5.

Unpackaged optical instruments shall not be tested unless they are specially designed, constructed and armoured (e.g. rubber armouring) for free fall. The degrees of severity are applicable to normal transport handling. Unless otherwise prescribed in the relevant

specification, the specimen shall be subjected to two falls. If another number of falls is taken, the total number of falls shall be prescribed in the relevant specification and shall be preferably taken from the following series: 10; 20; 50.

4.5 Conditioning method 34: Bounce

See table 6.

The test shall be carried out according to IEC 68-2-55 on a bounce table with a double amplitude of 25,5 mm \pm 0,5 mm and a frequency of 4,75 Hz \pm 0,05 Hz.

Table 4 — Degrees of severity for conditioning method 32: Drop and topple

Degree of severity		01 1)	02 1)	03 1)	04 2)
	mm	25	50	100	Toppling over
Height of overturn	Acceptable deviation		⁺²⁰ %		-
State of operation				0 or 1 or	2

- 1) The specimen shall be subjected to one drop on each of four bottom corners and along each of four bottom edges.
- 2) The specimen shall be subjected to one topple about each of four bottom edges.

iTeh STANDARD PREVIEW

Table 5 — Degrees of severity for conditioning method 33: Free fall

Degree of severity		01	02 2.1004	03	04	05	- 06
Height of fall	mm https://standards.iteh.ai/c	atalog/standard	1s/sist/e30557	4e-1821-43fc	9b93=	500	1 000
neight of fall	Acceptable deviation 9bcc	152b0f457/iso-	-9022-3-1994	+20	3%		
State of operation				0 0	or 1		
Mass of specimen in- cluding packing 1)	kg	> 500	≤ 500	≤ 200	≤ 100	≤ 50	≤ 20

NOTE — Storage containers shall not be considered as packing.

Table 6 — Degrees of severity for conditioning method 34: Bounce

Degree of severity		01	02	03
Exposure time	min	15	60	180
exposure time	Acceptable deviation		± 10 %	
State of operation			0 or 1	

NOTE — The degree of severity printed in boldface shall be given preference. The period of exposure shall be allocated in equal portions to each of the surfaces to be exposed.

¹⁾ Recommendation for selection of degrees of severity.

4.6 Conditioning method 35: Steady-state acceleration, centrifugal

See table 7.

4.7 Conditioning method 36: Sinusoidal vibration

The degrees of severity specified in table 8 are relevant to optical instruments because the low frequencies combined with large displacement amplitudes do not stress optical instruments.

In special cases refer to table 4 or figure 1 of IEC 68-2-6.

4.7.1 Vibration testing using sweep frequencies

See tables 8 and 9.

Table 7 — Degrees of severity for conditioning method 35: Steady-state acceleration, centrifugal

Degree of severity		01	02	03
Accident	m·s ⁻²	49	196	
Acceleration	g multiples	5	10	20
Exposure time along each axis and in each direction	min		1 to 2	
State of operation			1 or 2	

NOTE — The degree of severity printed in boldface shall be given preference.

iTeh STANDARD PREVIEW

Table 8 — Degrees of severity for conditioning method 36: Sinusoidal vibration using sweep frequencies

n	01 0,035	02	03	04	05	06	07	08	09	10
m	0.025					**		00	, 00	, ,,
	0,035	0,075	0,15	0,15	0,15	0,15	0,35	0,35	0,35	1,0
s ⁻² tnc://ctandardc.i	4,9	150 90.	19,6 lards/sist	19,6 (e30557)	le_182£	19,6 13 fc - 9h0	3 49	49	49	_
nultiples	905d5	2b0f457	iso-9022	-3- 3 994		2	5	5	5	_
Hz to 55 Hz		_	_	-	5		-	_	_	20
Hz to 150 Hz		·	20	_	_	_	5	_		_
Hz to 500 Hz	2		_	10	_	_	_	10		_
Hz to 2 000 Hz	_	2	_	_	_	10	_	_	10	
					0 or 1	or 2				
	Hz to 55 Hz Hz to 150 Hz Hz to 500 Hz Hz to 2 000 Hz	have the property of the prope	he //tandards the alcast log/standards the alc	he representation of the production of the representation of the r	he (standards if the sect log(standards (set 3.055)) nultiples 0.5	the //standards it sh a/cat log/standards/ss to 3/55/Te 18/21 nultiples	have //top dards to be averaged to get that lands /ost 18 30 55 7 18 2 1 3 15 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	have (standards if the algost to large (see to 30557 be 1821 H3 to 969 3 nultiples	the //standards the alicate logistant ards/sust 630557 to 1821 13 to 9043 nultiples 915d5 hol 457 iso 2022 -3-2994 — 2 5 5 Hz to 55 Hz — — — — 5 — — — — Hz to 150 Hz — — 20 — — — 5 — — 10 Hz to 500 Hz 2 — — 10 — — 10 Hz to 2 000 Hz — 2 — — 10 — — —	the //standards the all of log/standards is 30557 to 1821 1345 0160 1

The sweep rate for the specified number of frequency cycles shall be 1 octave per minute.

Table 9 — Typical applications

Frequency band Hz	Examples of application
10 to 55	Instruments installed in ships and other naval craft or in the neighbourhood of heavy rotating machines and for general industrial requirements.
10 to 150	Instruments for general industrial requirements and for use in and transport on ground vehicles.
10 to 500	Equipment for general airborne use and for use in ground vehicles (e.g. tracked vehicles) under special conditions.
10 to 2 000	Equipment for use in high-speed aircraft and missiles and in special vehicles such as hovercraft.

4.7.2 Vibration fatigue test using characteristic frequencies

See table 10.

The vibration fatigue test, using characteristic frequencies, shall not be performed unless in combination with the condition specified in 4.7.1.

The specimen shall be vibrated along each axis for the time specified in table 10. If the characteristic frequencies depend on the location of the specimen, they shall be specified in the relevant specification. In

the event that more than one characteristic frequency is used, portions of the exposure time shall be allocated to each frequency. The portion of exposure time to be allocated to each characteristic frequency shall be specified in the relevant specification.

4.8 Conditioning method 37: Random vibration (wide band), reproducibility: medium

The total conditioning time which is specified in tables 11 to 13 shall be divided equally between the conditioning axes defined in the relevant specification.

Table 10 — Duration of the vibration fatigue test using characteristic frequencies

Acceleration or displacement		To be	selected from ta	ble 8
	min	10	30	90
Exposure time using characteristic frequencies	Acceptable deviation		± 10 %	

Table 11 — Degrees of severity for conditioning method 37: Random vibration; frequency range from 20 Hz to 150 Hz

dards.ite	0,02 1,6	0,05 2,6	0,2 5,1	0,2 5,1
ISO 0022 3:1004	1,6	2,6	5,1	5,1
ISO 0022 3:1004		·		
150 7022-3.1994	4	20 to	150	
log/standards/sist/e	305574e-182f-	43fc-9 b 93-	9	30
2001437/ISO-9022-1 deviation	5-1994	± 10	%	
		0 or 1	or 2	
	1502157/ists_9022_	150/157/jos-9022_1-1994	b00457/iso-9022=3-1994 ± 10	NAMES 17/10-0022-1-1004

Table 12 — Degrees of severity for conditioning method 37: Random vibration; frequency range from 20 Hz to 500 Hz

Degree of severity		11	12	13	14	15
Acceleration power spectral density	g ² /Hz	0,005	0,01	0,05	0,05	0,05
Rms acceleration 1) (g multiples)		1,6	2,2	4,9	4,9	4,9
Frequency range $(f_1 \text{ to } f_2)$	Hz			20 to 500		
Total annulation in maties	min	9	9	9	30	90
Total conditioning time	Acceptable deviation			± 10 %		
State of operation				0 or 1 or 2		
The values refer to a rectangular specific control or control	ectrum.					7