INTERNATIONAL STANDARD

ISO 9022-15

> First edition 1994-07-15

Optics and optical instruments — Environmental test methods —

Part 15:

iTeh SCombined random vibration wide band: reproducibility medium, in dry heat or cold

https://standards.itc.governments.doptique.advernme

Partie 15: Essai combiné vibrations aléatoires à large bande (reproductibilité moyenne)-chaleur sèche ou froid

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 9022-15 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 1, Fundamental standards.

ISO 9022-15:1994

ISO 9022 consists of the following parts, under the general title Optics and 46f-4d05-b2a8-optical instruments — Environmental test methods 5a8/iso-9022-15-1994

- Part 1: Definitions, extent of testing
- Part 2: Cold, heat, humidity
- Part 3: Mechanical stress
- Part 4: Salt mist
- Part 5: Combined cold, low air pressure
- Part 6: Dust
- Part 7: Drip, rain
- Part 8: High pressure, low pressure, immersion
- Part 9: Solar radiation
- Part 10: Combined sinusoidal vibration, dry heat or cold

© ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

- Part 11: Mould growth
- Part 12: Contamination
- Part 13: Combined shock, bump or free fall, dry heat or cold
- Part 14: Dew, hoarfrost, ice
- Part 15: Combined random vibration wide band: reproducibility medium, in dry heat or cold
- Part 16: Combined bounce or steady-state acceleration, in dry heat or cold
- Part 17: Combined contamination, solar radiation
- Part 18: Combined damp heat and low internal pressure
- Part 19: Temperature cycles combined with sinusoidal or random vibration
- Part 20: Humid atmosphere containing sulfur dioxide or hydrogen sulfide

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9022-15:1994 https://standards.iteh.ai/catalog/standards/sist/6a2d130d-946f-4d05-b2a8-db918603a5a8/iso-9022-15-1994

46f-4d05-b2a8-

Introduction

Optical instruments are affected during their use by a number of different environmental parameters which they are required to resist without significant reduction in performance.

The type and severity of these parameters depend on the conditions of use of the instrument (for example, in the laboratory or workshop) and on its geographical location. The environmental effects on optical instrument performance in the tropics and subtropics are totally different from those found when they are used in the arctic regions. Individual parameters cause a variety of different and overlapping effects on instrument performance.

The manufacturer attempts to ensure, and the user naturally expects, that instruments will resist the likely rigours of their environment throughout their life. This expectation can be assessed by exposure of the instrument to a range of simulated environmental parameters under controlled laboratory conditions. The severity of these conditions is often increased to obtain meaningful results in a relatively short period of time.

In order to allow assessment and comparison of the response of optical instruments to appropriate environmental conditions, ISO 9022 contains details of a number of laboratory tests which reliably simulate a variety of different environments. The tests are based largely on IEC standards, modified where necessary to take into account features special to optical instruments.

It should be noted that, as a result of continuous progress in all fields, optical instruments are no longer only precision-engineered optical products, but, depending on their range of application, also contain additional assemblies from other fields. For this reason, the principal function of the instrument must be assessed to determine which International Standard should be used for testing. If the optical function is of primary importance, then ISO 9022 is applicable, but if other functions take precedence then the appropriate International Standard in the field concerned should be applied. Cases may arise where application of both ISO 9022 and other appropriate International Standards will be necessary.

Optics and optical instruments — Environmental test methods -

Part 15:

Combined random vibration wide band: reproducibility medium, in dry heat or cold

Scope

This part of ISO 9022 specifies methods of testing of optical instruments and instruments containing optical components under equivalent conditions, for their ability to resist combined random vibration wide band: reproducibility medium, in dry heat or cold.

the optical, thermal, chemical and electrical perform iso-902 ance characteristics of the specimen are affected by combined random vibration wide band: reproducibility medium, in dry heat or cold.

Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 9022. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 9022 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

15O 9022-1:19941, Optics and optical instruments — Environmental test methods — Part 1: Definitions, extent of testing.

1) To be published.

ISO 9022-2:1994, Optics and optical instruments — Environmental test methods - Part 2: Cold, heat, humidity.

ISO 9022-3:19941, Optics and optical instruments — Environmental test methods — Part 3: Mechanical stress.

The purpose of testing is to investigate to what extent ards/sistEC d68-2-47/19825-Environmental testing — Part 2: Tėsts 94 Mounting of components, equipment and other articles for dynamic tests including shock (Ea). bump (Eb), vibration (Fc and Fd) and steady-state acceleration (Ga) and guidance.

General information and test conditions

Exposure of the specimen to the combined stress conditions renders the test much more severe than separate exposure to any of the environmental conditions cited.

The tests shall be conducted in accordance with the requirements of ISO 9022-3.

The fixture for the specimen shall meet the requirements of IEC 68-2-47 and shall be thermally insulated, if appropriate.

If the specimen is mounted on shock absorbers, time shall be allowed for temperature stabilization of the absorber elements.

4 Conditioning

The required exposure time shall not commence until all parts of the specimen have reached a temperature within at least 3 K of the test chamber temperature. For heat-dissipating specimens, the period of exposure time shall not begin until the temperature of the specimens changes not more than 1 K within one hour at the stabilized test chamber temperature. The last hour of the temperature-soaking time shall be considered to be the first hour of the exposure period.

4.1 Conditioning method 70: Combined random vibration wide band, dry heat

See tables 1 to 3.

4.2 Conditioning method 71: Combined random vibration wide band, cold

See tables 4 to 6.

Table 1 — Degrees of severity for conditioning method 70: Combined random vibration wide band, frequency range from 20 Hz to 150 Hz, dry heat

	01	02	03	04	05	06	07	08	09	10	-11	12
		40	± 2			55	± 2			63	± 2	
						<	40		,			
Hz ·	0,02	0,05	0,2	0,2	0,02	0,05	0,2	0,2	0,02	0,05	0,2	0,2
nultiples 1)	1,6	2,6	5,1	5,1	1,6	2,6	5,1	5,1	1,6	2,6	5,1	5,1
		-				20 to	150					
י	1 9e		9	30	R 9	PRE	9	30/	9	9	9	30
ceptable viation		(s	tano	lard	ls.ita	eh å	0 %				4.	
			100									N
	nultiples 1)	nultiples 1) 1,6	Hz 0,02 0,05 nultiples 1) 1,6 2,6	nultiples 1) 1,6 2,6 5,1	Hz 0,02 0,05 0,2 0,2 nultiples 1) 1,6 2,6 5,1 5,1	Hz 0,02 0,05 0,2 0,2 0,02 nultiples 1) 1,6 2,6 5,1 5,1 1,6	Hz 0,02 0,05 0,2 0,2 0,02 0,05 nultiples 1) 1,6 2,6 5,1 5,1 1,6 2,6 20 to ceptable viation (standards iteh 3)	Hz 0,02 0,05 0,2 0,2 0,02 0,05 0,2 0,01 1,6 2,6 5,1 20 to 150 ceptable	Alz 0,02 0,05 0,2 0,2 0,02 0,05 0,2 0,2 0,01 0,2 0,2 0,01 0,01 0,2 0,02 0,0	Alz 0,02 0,05 0,2 0,2 0,02 0,05 0,2 0,2 0,02 0,0	Alz 0,02 0,05 0,2 0,2 0,02 0,05 0,2 0,2 0,02 0,0	Alz 0,02 0,05 0,2 0,2 0,02 0,05 0,2 0,2 0,02 0,0

https://standards.iteh.ai/catalog/standards/sist/6a2d130d-946f-4d05-b2a8-db918603a5a8/iso-9022-15-1994

Table 2 — Degrees of severity for conditioning method 70: Combined random vibration wide band, frequency range from 20 Hz to 500 Hz, dry heat

Degree of severity		20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Test chamber temperature	° C .			40 ± 2					55 ± 2		63 ± 2					
Relative humidity	%								< 40							
Acceleration power spectral density	g²/Hz	0,005	0,01	0,05	0,05	0,05	0,005	0,01	0,05	0,05	0,05	0,005	0,01	0,05	0,05	0,05
Rms acceleration	g multiples 1)	1,6	2,2	4,9	4,9	4,9	1,6	2,2	4,9	4,9	4,9	1,6	2,2	4,9	4,9	4,9
Frequency range $(f_1 \text{ to } f_2)$	Hz								20 to 50	0						•
Total conditioning	min	9	9	9	30	90	9	9	9	30	90	9	9	9	30	90
Total conditioning time	Acceptable deviation								± 10 %							
State of operation								C	or 1 or	2				*		

Table 3 — Degrees of severity for conditioning method 70: Combined random vibration wide band, frequency range from 20 Hz to 2 000 Hz, dry heat

	40	41	42	43 1)	44 1)	45 1)	46	47	48	49 1)	50 1)	51 1)	
°C	40 ± 2									± 2			
%	< 40											3 1	
g²/Hz	0,001	0,01	0,01	0,05	0,02	0,05	0,001	0,01	0,01	0,05	0,02	0,05	
g multiple ²⁾	1,4	4,5	4,5	10	6,3	10	1,4	4,5	4,5	10	6,3	10	
Hz						20 to 2	000						
min	9	9	30	30	90	90	9	9	30	30	90	90	
Acceptable devi- ation						± 10	%		<u> </u>	3 9			
	1					0 or 1	or 2				-		
	% g²/Hz g multiple²) Hz min Acceptable devi-	°C % g²/Hz 0,001 g multiple²) 1,4 Hz min 9 Acceptable deviation	°C % g²/Hz 0,001 0,01 g multiple²) 1,4 4,5 Hz min 9 9 Acceptable deviation	°C 40 ± % g²/Hz 0,001 0,01 0,01 0,01 0,01 g,01 0,01 <td< td=""><td>°C 40 ± 2 % g^2/Hz 0,001 0,01 0,01 0,05 $g \text{ multiple}^{2}$ 1,4 4,5 4,5 10 Hz min 9 9 30 30 Acceptable deviation</td><td>°C 40 ± 2 % 30 - 30 40 ± 2 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ g multiple2) $1,4$ $4,5$ $4,5$ 10 $6,3$ Hz 10 10<</td><td>°C 40 ± 2 % <</td><td>°C 40 ± 2 <40 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $g \text{ multiple}^2$) $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 Acceptable deviation $\pm 10 \text{ \%}$</td><td>°C 40 ± 2 <40 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $g \text{ multiple}^{2)}$ $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 9 Acceptable deviation $\pm 10 \text{ \%}$</td><td>°C 40 ± 2 55 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $0,01$ $0,01$ $g \text{ multiple}^{2)}$ $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ $4,5$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 9 30 Acceptable deviation</td><td>°C 40 ± 2 55 ± 2 % $< < 40$ g^2/Hz $0,001$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $0,05$ g multiple2) $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ $4,5$ 10 Hz 20 to 2 000 min 9 9 30 30 90 9 9 30 30 Acceptable deviation ± 10 %</td><td>°C 40 ± 2 55 ± 2 % -40 ± 2 -40 ± 2 g²/Hz 0,001 0,01 0,01 0,05 0,02 0,05 0,001 0,01 0,05 0,02 g multiple²) 1,4 4,5 4,5 10 6,3 10 1,4 4,5 4,5 10 6,3 Hz 20 to 2 000 min 9 9 30 30 90 9 9 30 30 90 Acceptable deviation $\pm 10 \%$</td></td<>	°C 40 ± 2 % g^2/Hz 0,001 0,01 0,01 0,05 $g \text{ multiple}^{2}$ 1,4 4,5 4,5 10 Hz min 9 9 30 30 Acceptable deviation	°C 40 ± 2 % 30 - 30 40 ± 2 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ g multiple2) $1,4$ $4,5$ $4,5$ 10 $6,3$ Hz 10 <	°C 40 ± 2 % <	°C 40 ± 2 <40 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $g \text{ multiple}^2$) $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 Acceptable deviation $\pm 10 \text{ \%}$	°C 40 ± 2 <40 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $g \text{ multiple}^{2)}$ $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 9 Acceptable deviation $\pm 10 \text{ \%}$	°C 40 ± 2 55 % <40 g^2/Hz $0,001$ $0,01$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $0,01$ $0,01$ $g \text{ multiple}^{2)}$ $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ $4,5$ Hz $20 \text{ to } 2 \text{ 000}$ min 9 9 30 30 90 90 9 9 30 Acceptable deviation	°C 40 ± 2 55 ± 2 % $< < 40$ g^2/Hz $0,001$ $0,01$ $0,05$ $0,02$ $0,05$ $0,001$ $0,01$ $0,05$ g multiple2) $1,4$ $4,5$ $4,5$ 10 $6,3$ 10 $1,4$ $4,5$ $4,5$ 10 Hz 20 to 2 000 min 9 9 30 30 90 9 9 30 30 Acceptable deviation ± 10 %	°C 40 ± 2 55 ± 2 % -40 ± 2 -40 ± 2 g²/Hz 0,001 0,01 0,01 0,05 0,02 0,05 0,001 0,01 0,05 0,02 g multiple²) 1,4 4,5 4,5 10 6,3 10 1,4 4,5 4,5 10 6,3 Hz 20 to 2 000 min 9 9 30 30 90 9 9 30 30 90 Acceptable deviation $\pm 10 \%$	

1) For instruments in missiles and	jet aircraft.
------------------------------------	---------------

²⁾ The values refer to a rectangular spectrum.

Degree of severity		52	53	54	55 ¹⁾	56 ¹⁾	57 ¹⁾						
Test chamber tem- perature	STANDA	RD	RD PRE 163 H2 W										
Relative humidity	(standar	ds.it	eh.a	ai) <	40								
Acceleration power spectral density	g²/Hz ISO 90	0,001 22-15:199	0,01	0,01	0,05	0,02	0,05						
Rms acceleration	g multiple 2)	dards/sist/ /iso_9022	0a2d13 4.5 15-190	4,5	10 10	6,3	10						
Frequency range (f ₁ to f ₂)	Hz		20 to 2 000										
Tatal as a ditionia	min	9	9	30	30	90	90						
Total conditioning time	Acceptable devi- ation		± 10 %										
State of operation		0 or 1 or 2											

²⁾ The values refer to a rectangular spectrum.

Table 4 — Degrees of severity for conditioning method 71: Combined random vibration wide band, frequency range from 20 Hz to 150 Hz, cold

Degree of severity		01	02	03	04	05	06	07	08	09	10	11	12		
Test chamber temperature	°C		- 10) ± 3			- 20) ± 3			– 25 ± 3				
Acceleration power spectral density	g²/Hz	0,02	0,05	0,02	0,02	0,02	0,05	0,2	0,2	0,02	0,05	0,2	0,2		
Rms acceleration	g multiples 1)	1,6	2,6	5,1	5,1	1,6	2,6	5,1	5,1	1,6	2,6	5,1	5,1		
Frequency range $(f_1 \text{ to } f_2)$	Hz	20 to 150										*			
T.4.1 1041 . 1	min	9	9	9	30	9	9	9	30	9	9	9	30		
Total conditioning time	Acceptable de- viation	± 10 %													
State of operation						· · · · · · · · · · · · · · · · · · ·	0 or '	1 or 2							
1) The values refer t	to a rectangular spe	ectrum.													

Degree of severity		13	14	15	16	17	18	19	20	21	22	23	24	
Test chamber temperature	°C		- 35	± 3			- 55	5 ± 3		- 65 ± 3				
Acceleration power spectral density	g²/Hz	0,02 en S	0,05 A	0,02	0,02	0,02	0.05	0.2 / E	0,2	0,02	0,05	0,2	0,2	
Rms acceleration	g multiples 1)	1,6	2,6	51	5,1	1,6	2,6	5,1	5,1	1,6	2,6	5,1	5,1	
Frequency range $(f_1 \text{ to } f_2)$	Hz	20 to 150												
T-4-1 PAII	min 1 // .	9	9.	<u>ISO 9</u>	02230 5:	1994	9	9	30	9	9	9	30	
Total conditioning time	Acceptable de- viation	ndards.1	db918	taiog/sta 3603a5a	indards/s .8/iso-90	181/0a2d 122-15-1	130 d-9 1994 ± 1	101-1d0 0 %	9-02a8-					
State of operation							0 or 1	1 or 2						

Table 5 — Degrees of severity for conditioning method 71: Combined random vibration wide band, frequency range from 20 Hz to 500 Hz, cold

Degree of severi	ty	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44		
Test chamber temperature	°C		-	10 ± 3	3				- 20 ± :	3		– 25 ± 3						
Acceleration power spectral density	g²/Hz	0,005	0,01	0,05	0,05	0,05	0,005	0,01	0,05	0,05	0,05	0,005	0,01	0,05	0,05	0,05		
Rms acceler- ation	g multiples ¹⁾	1,6	2,2	4,9	4,9	4,9	1,6	2,2	4,9	4,9	4,9	1,6	2,2	4,9	4,9	4,9		
Frequency range $(f_1 \text{ to } f_2)$	Hz		20 to 500															
	min	9	9	9	30	30	9	9	9	30	30	9	9	9	30	30		
Total con- ditioning time	Accepta- ble devi- ation	± 10 %												a a				
State of operation	on.		# 40.					. 0	or 1 or	2					×. ·			
1) The values re	fer to a rectan	gular sp	ectrum			*****		***********				<u>-</u>						

t y	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59
°C	iT		. 35 ± 3	3 A N	DA	DΠ	DĪ	- 55 ± 3	3	- 65 ± 3					
g²/Hz	0,005	0,01	0.95	0,05	0,05	0,005	2.0 1	0,05	0,05	0,05	0,005	0,01	0,05	0,05	0,05
g multiples ¹⁾	1,6	2,2	4,9	4,9 _{IS}	O ⁴ 902	2- 16 19	9.2,2	4,9	4,9	4,9	1,6	2,2	4,9	4,9	4,9
Hz	nttps://sta	andard	s.iteh.a db	vcatalo 91860:	g/stand 3a5a8/i	ards/sis so-9022	t/6a2d 2-15- 4	0 to 50	461-4d 0	05-628	18-				
min	9	9	9	30	30	9	9	9	30	30	9	9 .	9	30	30
Accepta- ble devi- ation								± 10 %							
n		···············		·····			0	or 1 or	2						
	g ² /Hz g multiples ¹⁾ Hz min Acceptable deviation	g²/Hz 0,005 g multiples¹) 1,6 Hz min 9 Acceptable deviation	g²/Hz 0,005 0,01 g multiples¹) 1,6 2,2 Hz min 9 9 Acceptable deviation	g ² /Hz 0,005 0,01 0,05 g multiples ¹⁾ 1,6 2,2 4,9 Hz db min 9 9 9 9 Acceptable deviation	g²/Hz 0,005 0,01 0,05 0,05 0,05 0,05 0,05 0,0	**C	**C	**C	**C	°C	°C	°C	°C	°C	°C $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$