INTERNATIONAL STANDARD

ISO 80000-12

First edition 2009-05-15

Reference number ISO 80000-12:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Foreword	iv
Introduction	vi
1 Scope	1
2 Normative references	1
3 Names, symbols, and definitions	1
Annex A (normative) Symbols for planes and directions in crystals	28
Bibliography	29
iTeh STAI (1997) (stan faros ith.ai) https://standards.ite/seave/st/ords/s5/362-84c7-4f62-a1f5-04a30b27c91e/iso-	23
\wedge \times	
$\bigvee_{\bigwedge} \bigvee_{\bigwedge} \bigvee_{\bigvee} \bigvee_{\bigvee}$	
$\langle / / / \rangle$	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 80000-12 was prepared by Technical Committee ISO/TC 12, *Quantities and units,* in co-operation with IEC/TC 25, *Quantities and units,* and their letter symbols.

This first edition of ISO 80000-12 cancels and replaces ISO 31-13:1992. It also incorporates the Amendment ISO 31-13:1992/Amd.1:1998. The major technical changes from the previous standard are the following:

- the presentation of numerical statements has been changed;
- the normative references have been changed.

ISO 80000 consists of the following parts, under the general title Quantities and units:

- Part 1: General
- Part 2: Mathematical signs and symbols to be used in the natural sciences and technology
- Part 3: Space and time
- Part 4: Mechanics
- Part 5: Thermodynamics
- Part 7: Light
- Part 8: Acoustics
- Part 9: Physical chemistry and molecular physics
- Part 10: Atomic and nuclear physics
- Part 11: Characteristic numbers
- Part 12: Solid state physics

IEC 80000 consists of the following parts, under the general title Quantities and units:

- Part 6: Electromagnetism
- Part 13: Information science and technology
- Part 14: Telebiometrics related to human physiology

Introduction

0.1 Arrangements of the tables

The tables of quantities and units in this International Standard are arranged so that the quantities are presented on the left-hand pages and the units on the corresponding right-hand pages.

All units between two full lines on the right-hand pages belong to the quantities between the corresponding full lines on the left-hand pages.

Where the numbering of an item has been changed in the revision of a part of ISO 31, the number in the preceding edition is shown in parenthesis on the left-hand page under the new number for the quantity; a dash is used to indicate that the item in question did not appear in the preceding edition.

0.2 Tables of quantities

The names in English and in French of the most important quantities within the field of this International Standard are given together with their symbols and, in most cases, their definitions. These names and symbols are recommendations. The definitions are given for identification of the quantities in the International System of Quantities (ISQ), listed on the left-hand pages of the table; they are not intended to be complete.

The scalar, vectorial or tensorial character of quantities is pointed out, especially when this is needed for the definitions.

In most cases only one name and only one symbol for the quantity are given; where two or more names or two or more symbols are given for one quantity and no special distinction is made, they are on an equal footing. When two types of italic letters exist (for example as with ϑ and θ ; φ and ϕ ; *a* and *a*; *g* and *g*), only one of these is given. This does not mean that the other is not equally acceptable. It is recommended that such variants should not be given different meanings. A symbol within parentheses implies that it is a reserve symbol, to be used when, in a particular context, the main symbol is in use with a different meaning.

In this English edition, the quantity names in French are printed in an italic font, and are preceded by *fr*. The gender of the French name is indicated by (m) for masculine and (f) for feminine, immediately after the noun in the French name.

0.3 Tables of units

0.3.1 General

The names of units for the corresponding quantities are given together with the international symbols and the definitions. These unit names are language-dependent, but the symbols are international and the same in all languages. For further information, see the SI Brochure (8th edition 2006) from BIPM and ISO 80000-1¹⁾.

The units are arranged in the following way:

a) The coherent SI units are given first. The SI units have been adopted by the General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM). The use of coherent SI units,

¹⁾ To be published.

and their decimal multiples and submultiples formed with the SI prefixes, are recommended, although the decimal multiples and submultiples are not explicitly mentioned.

b) Some non-SI units are then given, being those accepted by the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), or by the International Organization of Legal Metrology (Organisation Internationale de Métrologie Légale, OIML), or by ISO and IEC, for use with the SI.

Such units are separated from the SI units in the item by use of a broken line between the SI units and the other units.

- c) Non-SI units currently accepted by the CIPM for use with the SI are given in small print (smaller than the text size) in the "Conversion factors and remarks" column.
- d) Non-SI units that are not recommended are given only in annexes in some parts of this International Standard. These annexes are informative, in the first place for the conversion factors, and are not integral parts of the standard. These deprecated units are arranged in two groups:
 - 1) units in the CGS system with special names;
 - 2) units based on the foot, pound, second, and some other related units.
- e) Other non-SI units are given for information, especially regarding the conversion factors, in informative annexes in some parts of this International Standard.

0.3.2 Remark on units for quantities of dimension one, or dimensionless quantities

The coherent unit for any quantity of dimension one, also called a dimensionless quantity, is the number one, symbol 1. When the value of such a quantity is expressed, the unit symbol 1 is generally not written out explicitly.

EXAMPLE 1 Refractive index $n = 1,53 \times 1 = 1,53$

Prefixes shall not be used to form multiples or submultiples of this unit. Instead of prefixes, powers of 10 are recommended.

```
EXAMPLE 2 Reynolds number Re = 1,32 \times 10^3
```

Considering that plane angle is generally expressed as the ratio of two lengths and solid angle as the ratio of two areas, in 1995 the CGPM specified that, in the SI, the radian, symbol rad, and steradian, symbol sr, are dimensionless derived units. This implies that the quantities plane angle and solid angle are considered as derived quantities of dimension one. The units radian and steradian are thus equal to one; they may either be omitted, or they may be used in expressions for derived units to facilitate distinction between quantities of different kinds but having the same dimension.

0.4 Numerical statements in this International Standard

The sign = is used to denote "is exactly equal to", the sign \approx is used to denote "is approximately equal to", and the sign := is used to denote "is by definition equal to".

Numerical values of physical quantities that have been experimentally determined always have an associated measurement uncertainty. This uncertainty should always be specified. In this International Standard, the magnitude of the uncertainty is represented as in the following example.

EXAMPLE l = 2,347 82(32) m

In this example, l = a(b) m, the numerical value of the uncertainty b indicated in parentheses is assumed to apply to the last (and least significant) digits of the numerical value a of the length l. This notation is used when b represents the standard uncertainty (estimated standard deviation) in the last digits of a. The numerical example given above may be interpreted to mean that the best estimate of the numerical value of the length l when l is expressed in the unit metre is 2,347 82, and that the unknown value of l is believed to lie between (2,347 82 - 0,000 32) m and (2,347 82 + 0,000 32) m with a probability determined by the standard uncertainty 0,000 32 m and the probability distribution of the values of l.

Quantities and units —

Part 12: Solid state physics

1 Scope

ISO 80000-12 gives names, symbols and definitions for quantities and units of solid state physics. Where appropriate, conversion factors are also given.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 80000-3:2006, Quantities and units - Part 3: Space and time

ISO 80000-4:2006, Quantities and units - Part 4: Mechanics

ISO 80000-5:2007, Quantities and units - Part 5: Thermodynamics

IEC 80000-6:2008, Quantities and units - Part 6: Electromagnetism

https://standards.ite/_a/ca/_g/staao/rds/_a/_3b2-84c7-4462-a1f5-04a30b27c91e/iso-

ISO 80000-8:2007, Quantities and units - Part 8: Acoustics

ISO 80000-9:2009, Quantities and units - Part 9: Physical chemistry and molecular physics

ISO 80000-10:-2, Quantities and units - Part 10: Atomic and nuclear physics

3 Names, symbols, and definitions

The names, symbols, and definitions for quantities and units of solid state physics are given on the following pages.

²⁾ To be published. (Revision of ISO 31-9:1992 and ISO 31-10:1992)

SOLID STATE PHYSICS QUANTITIES			
Name	Symbol	Definition	Remarks
lattice vector <i>fr vecteur</i> (m) <i>du</i> <i>réseau</i>	R	translation vector that maps the crystal lattice on itself	
fundamental lattice vectors <i>fr vecteurs</i> (m) <i>de</i> <i>base</i>	a ₁ , a ₂ , a ₃ , a, b, c	fundamental translation vectors for the crystal lattice	$\boldsymbol{R} = n_1 \boldsymbol{a}_1 + n_2 \boldsymbol{a}_2 + n_3 \boldsymbol{a}_3$ where n_1, n_2 , and n_3 are integers.
angular reciprocal lattice vector <i>fr vecteur</i> (m) <i>du</i> <i>réseau</i> <i>réciproque</i>	G	vector whose scalar products with all fundamental lattice vectors are integral multiples of 2π	In crystallography, however, the quantity $C/2\pi$ is sometimes used.
fundamental reciprocal lattice vectors fr vecteurs (m) de base réciproques	b ₁ , b ₂ , b ₃	fundamental translation vectors for the reciprocal lattice	$a_i \cdot b_i = 2\pi \delta_{ij}$ In crystallography, however, the quantities $b_j/(2\pi)$ are also often used.
lattice plane spacing fr espacement (m) entre plans htt réticulaires		distance between successive lattice planes) 2-a1f5-04a30b27c91e/iso-
Bragg angle fr angle (m) de Bragg	0	$2d \sin \vartheta = n\lambda$ where <i>d</i> is the lattice plane spacing (item 12-3), λ is the	
order of reflexion fr ordre (m) de réflexion		item 7-3) of the radiation, and n is an integer	
	Name lattice vector fr vecteur (m) du réseau fundamental lattice vectors fr vecteurs (m) de base angular reciprocal lattice vector fr vecteur (m) du réseau angular reciprocal lattice vector fr vecteur (m) du réseau réciproque fundamental reciprocal lattice vectors fr vecteurs (m) de base réciproques lattice plane spacing fr espacement (m) entre plans réticulaires Bragg angle fr angle (m) de Bragg order of reflexion fr ordre (m) de réflexion	NameSymbollattice vector fr vecteur (m) du réseauRfundamental lattice vectors fr vecteurs (m) de basea1, a2, a3, a, b, cangular reciprocal lattice vector fr vecteur (m) du réseau réciproqueGfundamental reciprocal lattice vectors fr vecteurs (m) de baseGfundamental reciprocal lattice vectors fr vecteurs (m) de baseBfundamental reciprocal lattice vectors fr vecteurs (m) de base réciproquesb1, b2, b3fundamental reciprocal lattice base réciproquesdfundamental reciprocal lattice base réciproquesdfundamental reciprocal lattice base réciproquesdfundamental reciprocal lattice base réciproquesb1, b2, b3lattice plane spacing fr espacement (m) entre plans réticulairesdBragg angle fr angle (m) de Braggdorder of reflexion réflexionn	TATE PHYSICSNameSymbolDefinitionlattice vector fr vecteur (m) du réseauIttranslation vector that maps the crystal lattice on itselffundamental lattice vectors fr vecteurs (m) de base a_1, a_2, a_3, a_4, b, c fundamental translation vectors for the crystal latticeangular reciprocal lattice vector fr vecteur (m) du réseau réciproque G vector whose scalar products with all fundamental lattice vectors are integral multiples of 2π fundamental reciprocal lattice vectors fr vecteurs (m) de base réciproques b_1, b_2, b_3 fundamental translation vectors for the reciprocal lattice the reciprocal latticefundamental reciprocal lattice poques b_1, b_2, b_3 fundamental translation vectors for the reciprocal latticefundamental reciproques b_1, b_2, b_3 fundamental translation vectors tor the reciprocal latticefundamental reciproques b_1, b_2, b_3 fundamental translation vectors tor the reciprocal latticefundamental reciproques d distance between successive lattice planeslattice plane spacing fr espacement (m) entre plans m réticulaires d Bragg angle fr angle (m) de reflexion n order of reflexion fr ordre (m) de reflexion n norder of reflexion fr ordre (m) de reflexion n

UNITS				SOLID STATE PHYSICS
Item No.	Name	Inter- national symbol	Definition	Conversion factors and remarks
12-1.a	metre	m		ångström (Å), 1 Å = 10^{-10} m
12-2.a	metre to the power minus one	m ⁻¹		
12-3.a	metre	m		ångström (Å), 1 Å = 10^{-10} m
mps	\land	$\sum ($	20012-2009	
12-4.a	radian	rad	>`	
12-4.b	degree			$1^{\circ} = (\pi/180)$ rad $\approx 0,01745329$ rad
12-5.a <	one			See the Introduction, 0.3.2.
	\sim			(continued)

SOLID S	SOLID STATE PHYSICS QUANTITIES				
Item No.	Name	Symbol	Definition	Remarks	
12-6.1 (<i>13-6.1</i>)	short-range order parameter <i>fr paramètre</i> (m) <i>d'ordre local</i>	<i>r</i> , σ	fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction	Similar definitions apply to other order-disorder phenomena. Other symbols	
12-6.2	long-range order	<i>R</i> , <i>s</i>	fraction of atoms in an Ising ferromagnet having	are frequently used.	
(10-0.2)	fr paramètre (m) d'ordre à grande distance		fraction having magnetic moments in the opposite direction		
12-6.3 (—)	atomic scattering factor fr facteur (f) de diffusion atomique	f eh SJ	$f = E_{\rm a}/E_{\rm e}$ where $E_{\rm a}$ is the radiation amplitude scattered by the atom and $E_{\rm e}$ is the radiation amplitude scattered by a single electron	7	
12-6.4 (—)	structure factor fr facteur (f) de structure	F(h, k, l)	$F(h, k, l) = \sum_{n=1}^{N} f_n \exp[2\pi i(hx_n + ky_n + lz_n)]$		
	https://standards.		where f_n is the atomic scattering factor (item 12.6.3) for atom n , and x_n , y_n , z_n are fractional coordinates in the unit cell; for h , k , l , see Annex A	1b27c91e/iso-	
12-7 (<i>13-7</i>)	Burgers vector fr vecteur (m) de Burgers	¢ 	vector characterizing a dislocation, i.e. the closing vector in a Burgers circuit encircling a dislocation line		
	- A	\bigtriangledown			

UNITS				SOLID STATE PHYSICS
Item No.	Name	Inter- national symbol	Definition	Conversion factors and remarks
12-6.a	one	1		See Introduction, 0.3.2.
	iTeh S	TAN		IEW
		(stand		
https:	l'standards.itel a ca		000 12-2009	f5-04a30b27c91e/iso-
12-7.a	metre	m		
~~~~	ID			(continued)

SOLID S	SOLID STATE PHYSICS QUANTITIES				
Item No.	Name	Symbol	Definition	Remarks	
12-8.1 ( <i>13-8.1</i> )	particle position vector fr rayon (m) vecteur d'une particule	r, R	<i>r</i> is the position vector (ISO 80000-3:2006, item 3-1.11) of a particle	Often, <i>r</i> is used for electrons and <i>R</i> is used for atoms and other heavier particles.	
12-8.2 ( <i>13-8.2</i> )	equilibrium position vector of an ion or an atom fr rayon (m) vecteur d'équilibre d'un ion ou d'un atome	<i>R</i> ₀	<b>R</b> ₀ is the position vector (ISO 80000-3:2006, item 3-1.11) of a particle in equilibrium		
12-8.3 ( <i>13-8.3</i> )	displacement vector of ion or atom fr vecteur (m) de déplacement d'un ion ou d'un atome	^u ph ST (st	$u = R - R_0$ R is the particle position vector (item 12-8.1) and $R_0$ is the equilibrium position vector of a particle (item 12-8.2)	VIEW )	
12-9 ( <i>13-9</i> )	Debye-Waller factor fr facteur (m) de soit Debye-Waller	D, B	factor by which the intensity of a diffraction line is reduced because of the lattice vibrations	$D$ is sometimes expressed as $D = \exp(-2W)$ ; in Mössbauer spectroscopy, it is also called the $f$ factor and denoted by $f$ .	