INTERNATIONAL STANDARD

ISO 9061

Second edition 1993-04-01

Acid-grade and ceramic-grade fluorspar — Determination of iron content — 1,10-Phenanthroline spectrometric method

iTeh STANDARD PREVIEW

Spaths fluor pour la fabrication de l'acide fluorhydrique et spaths fluor utilisables dans l'industrie céramique — Dosage du fer — Méthode spectrométrique à la phénanthroline-1,10

ISO 9061:1993

https://standards.iteh.ai/catalog/standards/sist/50d374e2-a97e-4340-a93c-7e06b52ee8a3/iso-9061-1993

ISO 9061:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 9061 was prepared by Technical Committee ISO/TC 175, Fluorspar.

This second edition cancels sta and is irreplaces og/the dardirst t/5 (edition-a97e-4340-a93c-(ISO 9061:1988), which has been updated. 7e06b52ee8a3/iso-9061-1993

Annex A of this International Standard is for information only.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 • CH-1211 Genève 20 • Switzerland
Printed in Switzerland

Acid-grade and ceramic-grade fluorspar — Determination of iron content — 1,10-Phenanthroline spectrometric method

1 Scope

This International Standard specifies a 1,10-phenanthroline spectrometric method for the determination of the iron content of acid-grade and ceramic-grade fluorspar.

Spectrometric measurement of the coloured complex at a wavelength of about 510 nm, corresponding to the absorption maximum.

4 Reagents

The method is applicable to products having ron R During the analysis, use only reagents of recognized contents, expressed as Fe_2O_3 , in the range equivalent purity.

4.1 Sodium carbonate, anhydrous.

ISO 9061:1993

2 Normative references // Standards.itch.ai/catalog/standards/sist/4.213 Boric acid (H₃BO₃). 7e06b52ee8a3/iso-9061-1993

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 565:1990, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes of openings.

ISO 8868:1989, Fluorspar — Sampling and sample preparation.

3 Principle

Alkaline fusion of a test portion with a mixture of sodium carbonate and boric acid. Dissolution of the melt in excess hydrochloric acid. Reduction of the iron(III) with hydroxylammonium chloride. Formation of the iron(II)-1,10-phenanthroline complex in a buffered medium (pH between 3 and 5).

4.3 Hydrochloric acid. diluted 1 + 1.

Dilute one volume of hydrochloric acid (ρ approximately 1,18 g/ml) with an equal volume of water.

- **4.4 Hydroxylammonium chloride** (HONH₃Cl), 10 g/l solution.
- **4.5 1,10-Phenanthroline** monohydrate $(C_{12}H_8N_2.H_2O)$, 2 g/l solution.
- **4.6 Sodium acetate** trihydrate (CH₃COONa.3H₂O), 500 g/l solution.
- **4.7 Iron**, standard solution corresponding to 0,100 g of Fe_2O_3 per litre.

Weigh 0,605 g of ammonium iron(III) sulfate 24-hydrate $[Fe_2(SO_4)_3(NH_4)_2SO_4.24H_2O]$ to the nearest 1 mg, place in a beaker and dissolve in water.

Add 10 ml of sulfuric acid (ρ approximately 1,84 g/ml), allow to cool, transfer the solution quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this standard solution contains 0,100 mg of Fe_2O_3 .

Apparatus

Ordinary laboratory apparatus, and

- **5.1 Electric oven**, capable of being maintained at a temperature of 105 °C ± 2 °C.
- 5.2 Platinum dish, flat bottomed, of diameter approximately 80 mm and depth approximately 35 mm. fitted with a platinum lid.
- **5.3** Muffle furnace, capable of being maintained at a temperature of approximately 1 000 °C.
- 5.4 Spectrometer, with a radiation selector for continuous variation, fitted with cells of optical path length 2 cm.
- **5.5 Spectrometer**, with a radiation selector for discontinuous variation, fitted with the same cells and with filters giving a maximum transmission at a wavelength of about 510 nm.

7.2 Blank test

Carry out a blank test at the same time as the determination (7.4), following the same procedure and using the same quantities of all reagents as used for the determination, but omitting the test portion.

7.3 Preparation of the calibration graph

7.3.1 Preparation of the calibration solutions

Into each of a series of seven 250 ml one-mark volumetric flasks, place the volumes of standard iron solution (4.7) shown in table 1.

Table 1 — Calibration solutions

h cells of optical path	Volume of standard iron solution (4.7)	Corresponding mass of $\mathrm{Fe_2O_3}$
iation selector for dis-	ml	mg
h the same cells and m transmission at a	01) 1,0 2,0 3,0	0 0,1 0,2 0,3
iTeh STANDA	$RD PR_{50}^{40}VIEW$	0,4 0,5 0,6

Test sample

Prepare the test sample in accordance with the procedure given in ISO 8868:1989, subclause 9.3.

1) Zero calibration solution (blank solution for the calibration-graph reagents).

https://standards.iteh.ai/catalog/standards/si

(standar

7 Procedure

7.1 Test portion and preparation of the test solution

Grind several grams of the test sample (clause 6) in an agate mortar until it passes through a 63 µm mesh sieve (see ISO 565). Dry the sieved material for 2 h in the oven (5.1) maintained at 105 °C ± 2 °C, allow to cool in a desiccator and weigh, to the nearest 1 mg, about 0.5 g of this sample into a platinum dish (5.2).

Add 6 g of the boric acid (4.2) and 4 g of the anhydrous sodium carbonate (4.1) and mix carefully, preferably using a platinum spatula. Cover the dish with its lid, place it on a heat-resistant and thermally insulating plate, heat gently at first and then increase the heat gradually until the reaction slows down. Transfer the dish to the muffle furnace (5.3) maintained at approximately 1 000 °C and heat to complete fusion.

Remove the dish from the muffle furnace and allow to cool in air. Add hot water to the dish, heat in a water bath until the melt has dissolved, acidify by slowly adding 20 ml of hydrochloric acid (4.3) and transfer quantitatively to a 250 ml one-mark volumetric flask. Allow to cool, dilute to the mark with water and mix.

 $\begin{array}{c} 7e06b52ee8a3/iso_9061_1993 \\ \textbf{7.3.2} \end{array}$ Formation of the absorbing compound

Add to the contents of each volumetric flask an amount of water sufficient to dilute it to approximately 200 ml, then add 5 ml of the hydroxylammonium chloride solution (4.4), mix and allow to stand for 1 min. Add 10 ml of the sodium acetate solution (4.6) and 5 ml of the 1,10-phenanthroline solution (4.5), dilute with water to the mark and mix.

7.3.3 Spectrometric measurements

After 15 min, measure the absorbance of each calibration solution (7.3.1) using the spectrometer (5.4) adjusted to a wavelength of about 510 nm or the spectrometer (5.5) fitted with the appropriate filters, after having adjusted the instrument to zero absorbance against water.

7.3.4 Plotting the calibration graph

Subtract the absorbance of the zero calibration solution from the absorbance of each of the other calibration solutions (see table 1) to yield the net absorbance.

Plot a calibration graph showing, for example, the mass, in milligrams, of the iron(III) oxide (Fe₂O₃) contained in the calibration solutions on the abscissa and the corresponding values of net absorbance on the ordinate.

7.4 Determination

7.4.1 Aliquot portion of the test solution

In accordance with the estimated iron content, place an aliquot portion, as shown in table 2, of the test solution prepared in 7.1 in a 250 ml one-mark volumetric flask.

Table 2 — Volume of test solution to be used for the formation of the absorbing compound

Fe ₂ O ₃ content	Aliquot portion to be taken	
% (<i>m/m</i>)	ml	
0,1 to 0,5 0,5 to 1,0 1,0 to 2,0	50 20 10	

7.4.2 Formation of the absorbing compound

The iron content, expressed as a percentage by mass of Fe₂O₃, is given by the formula

$$\frac{m_1 - m_2}{m_0} \times \frac{r_D}{10}$$

where

- is the mass, in grams, of the test portion m_{\circ} (7.1);
- m_1 is the mass, in milligrams, of iron(III) oxide (Fe₂O₃) determined in the aliquot portion of the test solution (see 7.1) used for formation of the absorbing compound;
- is the mass, in milligrams, of iron(III) oxide m_2 (Fe₂O₃) determined in the aliquot portion of the blank test solution (7.2);
- is the ratio of the volume of the test sol r_{D} ution to the volume of the aliquot portion taken for the formation of the absorbing compound (7.4.2).

8.2 Precision

See annex A for information. To the aliquot portion of the test solution placed in the

250 ml one-mark volumetric flask (7.4.1), add the same quantities of all reagents as used for the stand ds. 9 e Test report dard iron solution (see 7.3.2), dilute to the mark with water and mix.

https://standards.iteh.ai/catalog/standards/sig/50alb7nformation4hecessary for the identification of 7.4.3 Spectrometric measurement 7e06b52ee8a3/iso-9061the93ample;

After 15 min, carry out the spectrometric measurements of the test solution (7.4.2) and the blank test solution (7.2), following the procedure specified in 7.3.3, after having adjusted the instrument to zero absorbance against water.

Expression of results

8.1 Method of calculation

By reference to the calibration graph (7.3.4), determine the mass of iron(III) oxide (Fe₂O₃) corresponding to the values of the net absorbances of the test solution and the blank test solution.

b) a reference to the method used (reference to this International Standard):

The test report shall include the following particulars:

- c) the results and the form in which they have been expressed;
- d) any unusual features noted during the determination;
- e) any operation not included in this International Standard, or in the International Standards to which reference is made, or regarded as optional.

Annex A

(informative)

Precision of the method

Comparative analyses carried out in five laboratories on the three samples gave the statistical information shown in table A.1.

The test samples for the comparative analyses carried out in the five laboratories were distributed to the laboratories after being ground until all the sample passed through a $63~\mu m$ mesh sieve.

Table A.1 — Results of interlaboratory tests

Sample		1	2	3
Mean of Fe	₂ O ₃ content [% (m/m)]	0,133	0,064	2,07
Standard deviation	of repeatability, $\sigma_{\rm r}$	0,006	0,006	0,03
	of reproducibility, σ_{R}	0,008	0,007	0,08

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9061:1993

https://standards.iteh.ai/catalog/standards/sist/50d374e2-a97e-4340-a93c-7e06b52ee8a3/iso-9061-1993

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 9061:1993

https://standards.iteh.ai/catalog/standards/sist/50d374e2-a97e-4340-a93c-7e06b52ee8a3/iso-9061-1993

ISO 9061:1993(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9061:1993 https://standards.iteh.ai/catalog/standards/sist/50d374e2-a97e-4340-a93c-7e06b52ee8a3/iso-9061-1993

UDC 553.634.12:543.42:546.72

Descriptors: minerals and ores, fluorspar, chemical analysis, determination of content, iron, spectrometric method.

Price based on 4 pages