

SLOVENSKI STANDARD SIST ISO 9096:1995

01-december-1995

Emisije nepremičnih virov - Določanje koncentracije in količine skupnega prahu v odvodnikih - Gravimetrična metoda

Stationary source emissions -- Determination of concentration and mass flow rate of particulate material in gas-carrying ducts -- Manual gravimetric method

iTeh STANDARD PREVIEW

Émissions de sources fixes -- Détermination de la concentration et du débit-masse de matières particulaires dans des veines gazeuses -- Méthode gravimétrique manuelle

SIST ISO 9096:1995 Ta slovenski standard je istoveten z: Ta slovenski standard je istoveten z: Mile is

ICS:

13.040.40 Emisije nepremičnih virov

Stationary source emissions

SIST ISO 9096:1995

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 9096:1995 https://standards.iteh.ai/catalog/standards/sist/3f4355ee-cea8-4c49-83aa-8fb1e3ac6a1d/sist-iso-9096-1995 SIST ISO 9096:1995

INTERNATIONAL STANDARD

ISO 9096

First edition 1992-06-15

Stationary source emissions — Determination of concentration and mass flow rate of particulate material in gas-carrying ducts — Manual iTeh gravimetric method EVIEW

(standards.iteh.ai)

Émissions de sources fixes — Détermination de la concentration et du débit-masse de matiéres particulaires dans des veines gazeuses https://standardMéthode.gravimétrique/manuelle.ca8-4c49-83aa-8fb1e3ac6a1d/sist-iso-9096-1995

Page

Contents

1	Scope	1
2	Normative reference	2
3	Definitions	2
4	Symbols with their corresponding units, subscripts and index	3
4.1	Symbols and their corresponding units	3
4.2	Subscript and index	3
5	Principle	5
6	Summary of the method	5
7	Review of measurements and calculations	7
8	Apparatus	10
8.1	General iTeh STANDARD PRE	¹⁰ IEW
8.2	List of equipment for measurement of particulate concentration	
8.3	Entry nozzle <u>SIST ISO 9096:1995</u>	
8.4	Probe tube https://standards.iteh.ai/catalog/standards/sist/3f4355ee 8tb1e3ac6a1d/sist-iso-9096-1995	-cea8-4c49-83aa- 12
8.5	Particle separators	12
9	Advance preparations	13
9.1	General	13
9.2	Selection of a suitable sampling location	13
9.3	Minimum number and location of sampling points	14
9.4	Size and position of access ports	14
9.5	Working platform	14
9.6	Selection of apparatus	15
9.7	Check on the suitability of the selected sampling position	15
10	Preparatory work before sampling	15
10.′	Preparation of equipment	15

© ISO 1992 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

	10.2	Assembly and mounting of equipment	16
	10.3	Area measurement	16
	10.4	Preliminary velocity and temperature survey	16
	11 :	Sampling procedure	16
	11.1	Gas velocity and temperature measurement	16
	11.2	Number and location of sampling points	16
	11.3	Duration of sampling	17
	11.4	Sampling	17
	11.4.1	General	17
	11.4.2	2 Cumulative sampling (3.3)	18
	11.4.3	B Incremental sampling (3.8)	18
	11.4.4		
iTeh S	11.5	Repeat samples NDARD PREVIEW	18
	12 (\$19	Weighing	18
		mdards.iteh.ai) Method of calculation	
https://standards	13.1 s.iteh.ai/	Seneral 9096:1995 catalog/standards/sist/3f4355ee-cea8-4c49-83aa-	19
	13 <mark>.2</mark> 1	eDuct gastiow9096-1995	19
	13.3	Sample gas flow	19
	13.4	Sample gas volume	20
	13.5	Particulate concentration	20
	13.6	Particulate mass flow rate	21
	14	Accuracy	21
	15	Test report	21
	Anne	xes	
	A	Factors affecting the accuracy of the method	23
	A.1	Location of sampling plane	23
	A.2	Number of sampling points	23
	A.3	Sampling time	23
	A.4	Nozzle design	23
	A.5	Nozzle alignment	23
	A.6	Departure from isokinetic sampling	23

B	Methods and rules for determining the position of sampling poir in circular and rectangular ducts	ots 24
B.1	General rule for circular ducts	24
B.2	Tangential rule for circular ducts	24
B.3	Rule for rectangular (and square) ducts	25
С	Care and use of Pitot static tubes	26
C.1	General	26
C.2	Routine examination and maintenance	26
C.3	Relation of Pitot head to gas flow direction	26
D	Calibration of Pitot tubes	27
E	Recommendations regarding sampling locations not meeting the requirement of a straight duct length of seven duct diameters	28
F	Alternative method of determining the particulate mass flow rate the duct	e in 29
G	Bibliography ITC	30/IEW
	(standards.iteh.a	i)

SIST ISO 9096:1995 https://standards.iteh.ai/catalog/standards/sist/3f4355ee-cea8-4c49-83aa-8fb1e3ac6a1d/sist-iso-9096-1995

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 9096 was prepared by Technical Committee ISO/TC 146, *Air quality*, Sub-Committee SC 1, *Stationary source emissions*.

SIST ISO 9096:1995

https://standards.Annexesi.A.s.B., C.d.D.s.E.and F.form_antiintegral part of this International Standard, Annex G.is.for information only.

iTeh This page intentionally left blankEVIEW (standards.iteh.ai)

SIST ISO 9096:1995 https://standards.iteh.ai/catalog/standards/sist/3f4355ee-cea8-4c49-83aa-8fb1e3ac6a1d/sist-iso-9096-1995

Stationary source emissions — Determination of concentration and mass flow rate of particulate material in gas-carrying ducts — Manual gravimetric method

WARNING - SAFETY PRECAUTIONS

GENERAL

Sampling operations may involve a variety of hazards depending on the circumstances. All those concerned, e.g. management, sampling operators and control authorities, shall consider the likely hazards adequately beforehand.

If hazards cannot be eliminated, it will be necessary to make appropriate safety arrangements with regard to any specific local, national or international regulations before sampling operations commence. \mathbf{REVIEW}

The hazards most likely to be encountered and the means of reducing them include those described below.

On every occasion, plant management and plant operators should be aware that sampling operations are taking place. Management should consider what appropriate safety procedures, e.g. work permits, should be adopted and ensure that they are understood by all those likely to be concerned. <u>SIST ISO 9096:1995</u>

HAZARDS TO SAMPLING OPERATORS ndards.iteh.ai/catalog/standards/sist/3f4355ee-cea8-4c49-83aa-

a) Working at heights or under conditions of difficult access consider a means of escape and the need for guard rails and base boards (see 9.5), warning systems, etc. Telecommunication will be desirable at remote locations. It is recommended that operators do not work alone.

b) Exposure to toxic, corrosive or hot gases or dusts from the access ports or from elsewhere in the processing plant — Consider circumstances, monitoring or warning systems, personal protective equipment, etc.

- c) Electrical hazards, from electrical equipment or electrostatic charge Consider equipment protection, earthing, etc. (see 9.5).
- d) Noise and heat from the plant or equipment Consider protective measures.
- e) Handling of heavy or bulky equipment Consider lifting arrangements and accessibility of sampling location.

HAZARDS TO OTHER PERSONNEL

- a) Objects falling from the platform Consider warning signs, barricading, etc.
- b) Presence of temporary equipment, e.g. cables causing trip hazards Consider warning signs etc.

HAZARDS TO PLANT

- a) Ignition of flammable gases Consider using non-sparking equipment, etc.
- b) Equipment dropped into duct system Take special care that sampling heads etc. cannot become detached.

1 Scope

This International Standard specifies a manual gravimetric method for the measurement of the concentration and mass flow rate of particulate matter in a moving gas stream in confined spaces such as ducts, chimneys and flues. This method can be used to determine concentrations ranging from $0,005 \text{ g/m}^3$ to 10 g/m^3 . For concentrations under

 $0,050 \text{ g/m}^3$, the inaccuracy of this method will be greater than \pm 10 % (see clauses 12 and 14).

It is primarily a reference method for the determination of particulate matter emitted from stationary sources and it can also be used for calibrating automatic continuous particulate monitors. The method should be applied as much as possible under steady state conditions of the gas flow in the duct. It is not suitable for use on ventilation or air conditioning systems, indoor atmospheres, or gases carrying droplets.

This International Standard also sets out requirements for the design features of apparatus which can be used for the determinations if correctly used and indicates basic requirements for the positioning of sampling facilities.

If any of the requirements of this International Standard are not fulfilled, the method can still be applied in special cases but the uncertainty on particulate concentration or flow rate may be larger (see clause 14).

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. SIST ISO 90

ISO 3966:1977, Measurement of fluid flow in closed conduits — Velocity area method using Pitot static tubes.

3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 access port: A hole in the duct at the extremity of a sampling line, through which the sampling probe is inserted [see figure 1 and *sampling line* (3.15)].

3.2 actual conditions: Temperature and pressure at the sampling points.

3.3 cumulative sampling: The collection of a single composite sample obtained by sampling for the required period at each sampling point in turn.

3.4 duct; flue; chimney; stack: An enclosed structure through which gases travel.

3.5 effective pressure: The difference between the pressure at the sampling point and the pressure of the ambient air at equal altitude.

elow. **3.6 gas:** A mixture of gaseous compounds or elf cur- ements which may carry particulate matter flowing SIST ISO 90(n la duct.

https://standards.iteh.ai/catalog/standards/sist/3f4355ee-cea8-4c49-83aa-8fb1e3ac6a1d/sist-iso-9096-1995

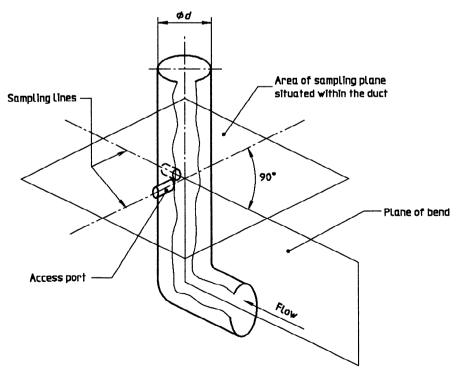


Figure 1 - Illustration of definitions in relation to a circular duct

3.7 hydraulic diameter: The characteristic dimension of a duct cross-section defined by

4 × Area of sampling plane Perimeter of sampling plane

3.8 incremental sampling: The collection and removal of individual samples from each sampling point.

3.9 isokinetic sampling: Sampling at a rate such that the velocity and direction of the gas entering the sampling nozzle (ν'_{N}) is the same as that of the gas in the duct at the sampling point ν'_{a} (see figure 2).

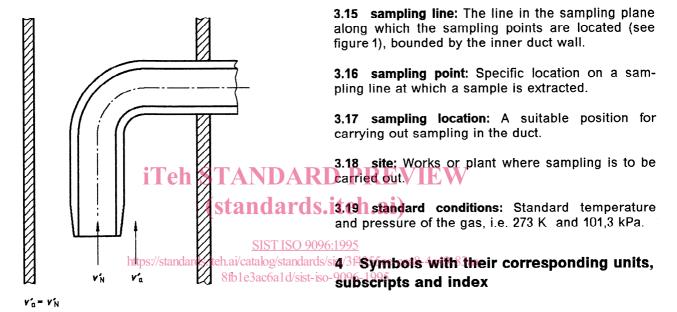
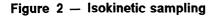



figure 1).

3.10 particulate concentration: Mass of particulate matter per unit volume of duct gas at defined gas temperature and pressure.

4.1 Symbols and their corresponding units

3.11 particulate flow rate: Mass of particulate mat-

3.12 particles; particulate matter: Solid particles, of

any shape, structure or density, dispersed in the

3.13 representative gas sample: A gas sample

having the same mean particulate concentration as prevails in the sampling plane during sampling.

3.14 sampling plane: The plane normal to the

centreline of the duct at the sampling position (see

ter contained in a duct gas flow per unit time.

continuous gas phase.

See table 1.

4.2 Subscript and index

See table 2.

Symbol	Meaning	Unit
a	Effective nozzle area	m ² m ²
Α	Sampling plane area	m ²
с	Particulate concentration	g/m³
δ	Thickness of nozzle wall at the tip	m
d	Duct diameter at sampling plane	m
d _H	Hydraulic duct diameter at sampling plane	m
d _{N1}	Inner nozzle diameter	m
d _{N2}	Outer nozzle diameter	m
d _o	Orifice diameter	m
f	Water vapour concentration	kg/m³
i	Individual position on sampling line (diameter or radius)	—
Κ	Calibration factor	-
1	Characteristic length	m
<i>l</i> ₁	Greater side length of sampling plane	m
I ₂	Smaller side length of sampling plane	m
m	Collected particulate mass	g
М	Molar mass	kg/kmol
n _d	Number of sampling points on sampling diameter	-
n _{dia}	Number of sampling diameters (sampling lines)	-
n,	Number of sampling points on sampling radius (0,5d)	-
n_1	Number of divisions of l ₁	
n_2	Number of divisions of l ₂	-
p	Absolute pressure	Pa
<i>p</i> _{am}	Ambient pressure	Pa
p_{e}	Effective pressure $p = p - p_{am}$ A ND ARD PREVIEW Differential pressure across flow measuring device	Pa
Δp	Differential pressure across flow measuring device	Pa
q_m	Particulate flow rate in duct (stor double it choose)	g/h
q_V	Gas volumetric flow rate (standards.iteh.ai)	m³/h
r	Volume fraction of gaseous component	-
ρ	Gas density SIST ISO 0006/1005	kg/m³
t	Sampling time (total)	h
Δt	Sampling time persampling pointa/catalog/standards/sist/3t4355ee-cea8-4c49-83aa-	h
Т	Temperature (absolute) 8fb1e3ac6a1d/sist-iso-9096-1995	K
Θ	Temperature	O°
v	Gas velocity	m/s m
V	Gas volume	m
V _m	Molar volume of a gas	m³/kmol
<i>x</i> ,	Distance from wall to individual sampling point along diameter or radius	m

Table 1 — Symbols and their corresponding units

Table 2 — Subscript and index

Subscript or index	Meaning
а	Actual conditions in sampling plane
g	Any gas measuring device
i	Individual value
n	Standard conditions
N	Nozzle
о	Orifice
Pt	Pitot tube
w	Water vapour
,	Moisture included

4