INTERNATIONAL STANDARD

ISO 9119

First edition 1990-12-01

Cross-country skis — Binding mounting area — Requirements and test methods

iTeh State fond Zone de montage de la fixation -- Spécifications et (méthodes d'essai iteh.ai)

ISO 9119:1990 https://standards.iteh.ai/catalog/standards/sist/13847953-bdc5-4dfe-8ed9-386d2bbe2e28/iso-9119-1990

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 9119 was prepared by Technical Committee ISO/TC 83, Sports and recreational equipment.

This first edition cancels and replaces ISO 7264:19835 (ISO 7265) 1984 and ISO 7793:1984. https://standards.iteh.ai/catalog/standards/sist/13847953-bdc5-4dfe-8ed9-386d2bbe2e28/iso-9119-1990

© ISO 1990

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 ◆ CH-1211 Genève 20 ◆ Switzerland

Printed in Switzerland

Introduction

Standardized dimensions for a binding mounting area enable a ski designer to locate reinforcing elements within this area. Standard dimensions also enable the binding designer to determine all interface dimensions for binding unit size, screw locations, etc. Bindings and skis manufactured in compliance with this International Standard are compatible.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9119:1990 https://standards.iteh.ai/catalog/standards/sist/13847953-bdc5-4dfe-8ed9-386d2bbe2e28/iso-9119-1990

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

ISO 9119:1990

https://standards.iteh.ai/catalog/standards/sist/13847953-bdc5-4dfe-8ed9-386d2bbe2e28/iso-9119-1990

Cross-country skis — Binding mounting area — Requirements and test methods

Scope

1.1 This International Standard specifies requirements and test methods for the binding mounting areas of cross-country skis, within which parts of the toe-clip binding in accordance with ISO 6960 may be mounted. Different values are specified for two groups of nominal ski lengths, l_N :

agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 6960:1983, Cross-country ski bindings with three

ISO 6289:1985, Skis — Terms and definitions.

of mass and location of balance point.

Group 1: 1750 mm $< l_{\rm N} \le 2200$ mm $< l_{\rm N} \le 2200$ mm Dimensions interface and design. Group 2: 1300 mm $\leq l_N \leq$ 1750 mm tandards.itiso 7138:1984, Cross-country skis — Determination

It specifically excludes alpine skis.

- https://standards.iteh.ai/catalog/standards/sist 1.2 A designated binding attachment area coviso-911 binding mounting area (see 3.1), shall be provided by the ski manufacturer and shall be the only area of the ski subjected to this test.
- 1.3 This International Standard covers skis the bindings of which are attached by means of screws in area A_1 and screws, nails or other fasteners in areas A_2 and A_3 (see figure 1 and figure 2).
- 1.4 Using test screws loaded normal to the ski surface, the test methods specified simultaneously evaluate the tendency of
- screws to be pulled out;
- skis to delaminate;
- screw hole threads to strip.

Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to

ISO 9119:1990 ISO 7794:1984, Cross-country skis — Ski binding screws — Requirements.

> ISO 7795:1984, Cross-country skis — Ski binding screws — Test methods.

> ISO 10228:—1), Cross-country skis — Binding mounting area — Requirements for test screws.

Definitions

For the purposes of this International Standard, the definitions given in ISO 6289 and the following definitions apply.

- **3.1 binding mounting area** A_1 : Portion of the top surface of the ski which is intended for mounting toe-clip bindings. The standardized binding mounting area establishes the area on the ski within which the entire diameter of binding screws should be placed.
- 3.2 binding mounting areas A_2 and A_3 : Portions of the top surface of the ski intended for mounting other parts of a binding such as heel support plates. These are the areas on the ski within which the entire diameter of the part attachment fasteners should be placed (see figure 1 and figure 2).

¹⁾ To be published.

4 Specifications

4.1 Indication of mounting point

The ski manufacturer is responsible for the proper location of the mounting point on the ski.

The mark of a mounting point shall be a line perpendicular to the axis of the ski, the minimum length being 30 mm. It is permissible to use a scale indicating different mounting points for different boot applications.

If there is no mark on the ski for the mounting point, MP, the balance point, BP, of the ski — defined by placing the ski on a knife-edge fulcrum point — shall be used as a reference point (see ISO 7138). In the case of a difference between two skis of the same pair, the most rearward point shall be used.

4.2 Minimum length of the binding mounting area

4.2.1 Ski lengths from 1 300 mm to 1 750 mm

The minimum length of the binding mounting area for ski lengths $l_{\rm N}$, from 1 350 mm to 1 750 mm shall be as shown in figure 1.

Where a mounting scale is used, the area A_1 shall be extended such that there is 40 mm beyond the rear and 70 mm beyond the front limits of the scale.

4.2.2 Ski lengths from 1 750 mm to 2 200 mm

The minimum lengths of the binding mounting area for ski lengths $l_{\rm N}$, from 1750 mm to 2200 mm shall be as shown in figure 2 and table 1.

Dimensions in millimetres

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 9119:1990
https://standards.iteh.ai.catalog/standards/sist/13847953-bdc5-4dfe-8ed93/40/2bbc2e28/iso-9119-1990

A1

230 110 MP

Figure 1 — Minimum length of the binding mounting area for ski lengths $l_{\rm N}$, from 1 300 mm to 1 750 mm and curvature of the surface

Figure 2 — Minimum length of the binding mounting area for ski lengths $l_{\rm N}$, from 1750 mm to 2200 mm and curvature of the surface

26,7 mm, allowing for a 6,3 mm screw diameter and tolerances (see figure 3).

Table 1 — Minimum lengths of the binding mounting area for nominal ski lengths 1/N, from 1/750 mm RD PREVIEW to 2 200 mm

Dimensions in millimetres s.iteh.ai) Nominal ski Binding mounting area ISO 91 9:1990 length, andards.iteh.ai l_N 1,11 2 100 2 1 5 0 2 2 0 0

Where a mounting scale is used, the area A_1 shall be extended such that there is 40 mm beyond the rear limit and 70 mm beyond the front limit of the scale.

4.3 Minimum width of the binding mounting area

The minimum width of the binding mounting area, b_A , shall be 33 mm.

Staying within this area requires a binding design such that the centre-to-centre distance between screws perpendicular to the centre-line is less than

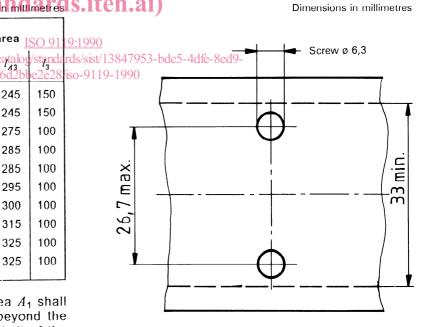


Figure 3 — Minimum width of the binding mounting area

4.4 Minimum thickness of the binding mounting area

The minimum thickness of the total binding mounting area shall be such that the drill hole depth as shown in table 2 and figure 4 is possible.

Table 2 — Minimum thickness of the binding mounting area (drill hole depth)

Dimensions in millimetres

Nominal ski length	Drill hole depth <i>d'</i> , min.	
	Area A_1 , A_2 and A_3	
Group 1	15,5	
Group 2	11,5	

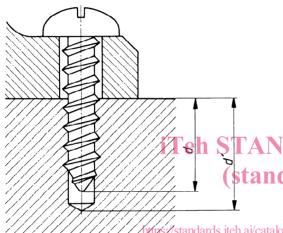


Figure 4 — Drill hole depth

4.5 Surface condition of the binding mounting area

4.5.1 Transverse profile (convexity) of surface

Deviations from straightness of the transverse profile are only permissible in the form of a constant curve across the width of the mounting area; the tolerance on straightness within this area is given in figure 5.

There shall be no step in the profile within a width b_A for all groups symmetrical to the longitudinal axis: outside this area steps are allowed only into the body of the ski.

4.5.2 Longitudinal profile of surface

Deviations from straightness of the longitudinal profile are only permissible in the form of a constant curve in the length of the mounting area; the tolerance on straightness in this area, the ski base being pressed against a flat surface, are given for groups 1 and 2 in figure 1 and figure 2 respectively.

5 Strength requirements of the binding mounting area

5.1 Screw retention strength

The values given in table 3 for the penetration depth d and for the screw retention strength $F_{\rm R, min}$ for the screws within the binding mounting area, if the load is applied quasistatically, shall be observed.

5.2 Minimum stripping resistance

The minimum stripping resistance of the ski shall be 3,5 N·m in the areas A_1 , A_2 and A_3 , for groups 1 and 2.

6 Apparatus

6.1 Retention strength

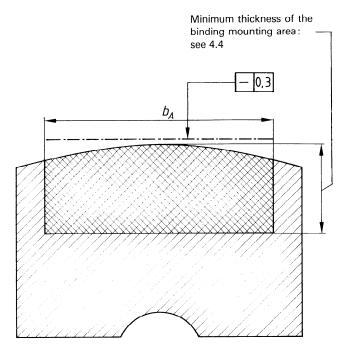
ANDA 6.1.1 Tensile testing machine, as shown in figure 6, providing a loading rate accuracy of ± 20 % at a loading rate of 5 mm/min and a load measurement accuracy of ± 1 % with a minimum load range of ISO 91 5.000 N.

standards.iteh.ai/catalog/standards/sist/13847953-bdc5-4dfe-8ed9-

386d2bbe2e28.6.1.211 Test fixture, (see figure 6), consisting of

- a) an attachment element as shown in figure 7 made of cold-rolled steel or equivalent;
- b) a universal joint which is connected to the attachment element and to the clamping device of the test machine (6.1.1);
- c) a ski support with two support rollers 300 mm apart.

The test fixture shall be a self-aligning type (so that no moment is imposed on the screw pattern).


6.2 Stripping resistance.

A jig as shown in figure 8 shall be used to drill holes, mount test screws and determine the stripping torque.

Used with a drill bushing, the jig shall ensure an exact drill hole and screw mounting perpendicular to the top surface of the ski.

The jig is equipped with a friction plate, as shown in figure 9 (for example see ISO 7795).

Straightness tolerance in millimetres

iTeh STANIONARH CONVEXITY VIEW (standards.iteh.ai)

Table 3 — Penetration depth d and minimum screw retention strength $F_{\rm R,min}$

Nominal ski length	https://standards.iteh.ai/cata Penetration depth/6d2	log/stscrewsretention7953 bbe2e28strength-1990	-bdc5-4dfe-8ed9- Penetration depth	Screw retention strength
	d	$F_{R,min}$	d	$F_{R,min}$
	mm	N	mm	N
	Area			
	A_1		$arLambda_2$ and $arLambda_3$	
Group 1	14 ± 0,5	1 600	14 ± 0,5	1 200
Group 2	10 ± 0,5	1 300	10 ± 0,5	900