

SLOVENSKI STANDARD SIST EN 62271-101:2006

01-december-2006

BUXca Yý U. SIST EN 60427:2000

J]gc_cbUdYhcghbY`ghj_U'bY`]b`_fa]`bY`bUdfUj Y``%\$%"XY`.`G]bhYhj bc`dfYg_i ýUb^Y fH97 '* &&+%%\$%&\$\$*と

High-voltage switchgear and controlgear - Part 101: Synthetic testing (IEC 62271-101:2006)

iTeh STANDARD PREVIEW

Hochspannungs-Schaltgeräte und Schaltanlagen Teil 101: Synthetische Prüfung (IEC 62271-101:2006)

SIST EN 62271-101:2006

https://standards.iteh.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-

Appareillage a haute tension -- Rartie 101: Essais synthétiques (CEI 62271-101:2006)

Ta slovenski standard je istoveten z: EN 62271-101:2006

<u>ICS:</u>

29.130.10 Visokonapetostne stikalne in High voltage switchgear and krmilne naprave controlgear

SIST EN 62271-101:2006

en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62271-101:2006

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 62271-101

July 2006

ICS 29.130.10

Supersedes EN 60427:2000

English version

High-voltage switchgear and controlgear Part 101: Synthetic testing (IEC 62271-101:2006)

Appareillage à haute tension Partie 101: Essais synthétiques (CEI 62271-101:2006) Hochspannungs-Schaltgeräte und -Schaltanlagen Teil 101: Synthetische Prüfung (IEC 62271-101:2006)

This European Standard was approved by CENELEC on 2006-07-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

https://standards.iteh.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2006 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 17A/753/FDIS, future edition 1 of IEC 62271-101, prepared by SC 17A, High-voltage switchgear and controlgear, of IEC TC 17, Switchgear and controlgear, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 62271-101 on 2006-07-01.

This European Standard supersedes EN 60427:2000.

This standard shall be read in conjunction with EN 62271-100:2001. The numbering of the subclauses of Clause 6 is the same as in EN 62271-100. However, not all subclauses of EN 62271-100 are addressed; merely those where synthetic testing has introduced changes.

The following dates were fixed:

-	latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2007-04-01
-	latest date by which the national standards conflicting with the EN have to be withdrawn	(dow)	2009-07-01

Annex ZA has been added by CENELEC.

iTeh STEndorsement notice VIEW

The text of the International Standard IEC 62271-101:2006 was approved by CENELEC as a European Standard without any modification.

Annex ZA

- 3 -

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	<u>Year</u>	Title	<u>EN/HD</u>	<u>Year</u>
IEC/TS 61633	1995	High-voltage alternating current circuit- breakers - Guide for short-circuit and switching test procedures for metal-enclosed and dead tank circuit-breakers	-	-
IEC 62271-100	2001	High-voltage switchgear and controlgear Part 100: High-voltage alternating-current circuit-breakers	EN 62271-100	2001
IEC/TR 62271-308	2002 iTe	High-voltage switchgear and controlgear Part 308: Guide for asymmetrical short-circuit breaking test duty T100a (standards.iteh.ai)	W	-

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62271-101:2006

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 62271-101

Première édition First edition 2006-05

Appareillage à haute tension -

Partie 101: Essais synthétiques

iTeh STANDARD PREVIEW High-voltage switchgear and controlgear – (standards.iteh.ai) Part 101: Syntheticitesting-101:2006

https://standards.iteh.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-9eb7b9f26554/sist-en-62271-101-2006

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

Pour prix, voir catalogue en vigueur For price, see current catalogue

CONTENTS

FO	REWO)RD	11
1	Scop	e	15
2	Norm	ative references	15
3	Term	s and definitions	15
4	Synth	netic testing techniques and methods for short-circuit breaking tests	19
	4.1	Basic principles and general requirements for synthetic breaking test	10
	4.0	Curthetic test sizewite and related encoific requirements for bracking tests	19
	4.2	Synthetic test circuits and related specific requirements for breaking tests	25
5	4.0 Svoti	Three-phase synthetic test methods	
5	5 yiiu	Pasia principles and general requirements for synthetic making tests	
	5.1	Basic principles and general requirements for synthetic making test methods	
6	Spec relate	ific requirements for synthetic tests for making and breaking performance ad to the requirements of 6.102 through 6.111 of IEC 62271-100	39
Anı	nex A	(informative) Current distortion	79
Anr	ıex B	(informative) Current injection methods	.111
Anr	nex C	(informative) Voltage injection methods D. PREVIEW	. 121
Anr	nex D	(informative) Duplicate circuit (transformer or Skeats circuit)	. 127
Anr	nex E	(normative) Information to be given and results to be recorded for synthetic tests .	. 133
An	iex F	(informative) Special procedures for testing circuit-breakers having parallel	105
Ani	nex G	(informative) Synthetic methods for capacitive current switching	. 135
Anr	nex H	(informative) Re-ignition methods to prolong arcing	. 165
Anr	nex I (normative) Reduction in di/dt and TRV for test duty T100a	. 173
Anr	nex J (informative) Three-phase synthetic test circuits	. 201
Anr	nex K	(normative) Test procedure using a three-phase current circuit and one	217
An	nex L	(normative) Splitting of test duties in test series taking into account the	
ass		a TRV for each pole-to-clear	
Anr		(normative) Tolerances on test quantities for type tests	.275
Bib	liogra	phy	.281
Fig	ure 1	 Interrupting process – Basic time intervals 	63
Fig	ure 2	- Example of recovery voltage	65
Fig me	ure 3 thod	 Equivalent surge impedance of the voltage circuit for the current injection 	67
Fig	ure 4	 Making process – Basic time intervals 	69

Figure 5 – Typical synthetic make circuit for single-phase tests	71
Figure 6 – Typical synthetic make circuit for three-phase tests ($k_{pp} = 1,5$)	73
Figure 7 – Comparison of arcing time settings during three-phase direct tests (left) and three-phase synthetic (right) for T100s with $k_{pp} = 1,5$	75
Figure 8 – Comparison of arcing time settings during three-phase direct tests (left) and three-phase synthetic (right) for T100a with $k_{pp} = 1,5$	77
Figure A.1 – Direct circuit, simplified diagram	93
Figure A.2 – Prospective short-circuit current	93
Figure A.3 – Distortion current	93
Figure A.4 – Distortion current	95
Figure A.5 – Simplified circuit diagram	97
Figure A.6 – Current and arc voltage characteristics for symmetrical current	99
Figure A.7 – Current and arc voltage characteristics for asymmetrical current	101
Figure A.8 – Reduction of amplitude and duration of final current loop of arcing	103
Figure A.9 – Reduction of amplitude and duration of final current loop of arcing	105
Figure A.10 – Reduction of amplitude and duration of final current loop of arcing	107
Figure A.11 – Reduction of amplitude and duration of final current loop of arcing	109
Figure B.1 – Typical current injection circuit with voltage circuit in parallel with the test circuit-breaker.	115
Figure B.2 – Injection timing for current injection scheme with circuit B.1	115
Figure B.3 – Typical current injection circuit with voltage circuit in parallel with the auxiliary circuit-breaker	117
Figure B.4 – Injection timing for current injection scheme with circuit B.3	117
Figure B.5 – Examples of the determination of the interval of significant change of arc voltage from the oscillograms ds.itch.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-	119
Figure C.1 – Typical voltage injection circuit diagram with voltage circuit in parallel with the auxiliary circuit-breaker (simplified diagram)	123
Figure C.2 – TRV waveshapes in a voltage injection circuit with the voltage circuit in parallel with the auxiliary circuit-breaker	125
Figure D.1 – Transformer or Skeats circuit	129
Figure D.2 – Triggered transformer or Skeats circuit	131
Figure G.1 – Capacitive current circuits (parallel mode)	147
Figure G.2 – Current injection circuit	149
Figure G.3 – LC oscillating circuit	151
Figure G.4 – Inductive current circuit in parallel with LC oscillating circuit	153
Figure G.5 – Current injection circuit, normal recovery voltage applied to both terminals of the circuit-breaker	155
Figure G.6 – Synthetic test circuit (series circuit), normal recovery voltage applied to both sides of the test circuit breaker	157
Figure G.7 – Current injection circuit, recovery voltage applied to both sides of the circuit-breaker.	159
Figure G.8 – Making test circuit	161
Figure G.9 – Inrush making current test circuit	163

62271-101 © IEC:2006 - 7 -

Figure H.1 – Typical re-ignition circuit diagram for prolonging arc-duration	. 167
Figure H.2 – Combined Skeats and current injection circuits	. 169
Figure H.3 – Typical waveforms obtained during an asymmetrical test using the circuit in Figure H.2.	171
Figure J.1a – Three-phase synthetic combined circuit	205
Figure J.1b – Waveshapes of currents, phase-to-ground and phase-to phase voltages during a three-phase synthetic test (T100s; $k_{pp} = 1.5$) performed according to the three-phase synthetic combined circuit	207
Figure J.2a – Three-phase synthetic circuit with injection in all phases for k_{pp} = 1,5	209
Figure J.2b – Waveshapes of currents and phase-to-ground voltages during a three- phase synthetic test (T100s; k_{pp} =1,5) performed according to the three-phase synthetic circuit with injection in all phases	211
Figure J.3a – Three-phase synthetic circuit for terminal fault tests with $k_{pp} = 1,3$ (current injection method)	213
Figure J.3b – Waveshapes of currents, phase-to-ground and phase-to-phase voltages during a three-phase synthetic test (T100s; $k_{pp} = 1,3$) performed according to the three-phase synthetic circuit shown in Figure J.3a	213
Figure J.3c – TRV voltages waveshapes of the test circuit described in Figure J.3a	215
Figure K.1 – Example of a three-phase current circuit with single-phase synthetic injection.	. 237
Figure K.2 – Representation of the testing conditions of Table K.1a	239
Figure K.3 – Representation of the testing conditions of Table K.1b.	241
Figure K.4 – Representation of the testing conditions of Table K.2a	243
Figure K.5 – Representation of the testing conditions of Table K.2b	245
Figure K.6 – Representation of the testing conditions of Table K.3a	247
Figure K.7 – Representation of the testing conditions of Table K.3b	249
Figure K.8 – Representation of the testing conditions of Table K.4a	. 251
Figure K.9 – Representation of the testing conditions of Table K.4b	. 253
Figure L.1 – Graphical representation of the test shown in Table L.1	267
Figure L.2 – Graphical representation of the test shown in Table L.2	269
Table 1 – Test circuits for test duties T100s and T100a	31
Table 2 – Test duties T10, T30, T60 and T100s	33
Table 2a – First-pole-to-clear factor: 1,5 – Test parameters during three-phase interruption	33
Table 2b – First-pole-to-clear factor: 1,3 – Test parameters during three-phase interruption	33
Table 3 – Synthetic test methods for test duties T10, T30, T60, T100s, T100a, SP, DEF, OP and SLF	59
Table I.1a – Last current loop parameters for 50 Hz operation in relation to short-circuit test duty T100a τ = 45 ms	175
Table I.1b – Last current loop parameters for 50 Hz operation in relation to short-circuit test duty T100a τ = 60 ms	177
Table I.1c – Last current loop parameters for 50 Hz operation in relation to short-circuit test duty T100a τ = 75 ms	179
Table I.1d – Last current loop parameters for 50 Hz operation in relation to short-circuit test duty T100a τ = 120 ms	. 181

62271-101 © IEC:2006 - 9 -

Table I.2a – Last current loop parameters for 60 Hz operation in relation to short-circuit test duty T100a τ = 45 ms	. 183
Table I.2b – Last current loop parameters for 60 Hz operation in relation to short-circuit test duty T100a τ = 60 ms	. 185
Table I.2c – Last current loop parameters for 60 Hz operation in relation to short-circuit test duty T100a τ = 75 ms	. 187
Table I.2d – Last current loop parameters for 60 Hz operation in relation to short-circuit test duty T100a τ = 120 ms	. 189
Table I.3a – Last loop di/dt reduction for 50 Hz under three-phase conditions with the first pole to clear in phase A and the required asymmetry in phase C	. 191
Table I.3b – Last loop d <i>i</i> /d <i>t</i> reduction for 60 Hz under three- phase conditions with the first pole to clear in phase A and the required asymmetry in phase C	. 193
Table I.4a – Corrected TRV values for k_{pp} = 1,3 and f_r = 50 Hz	. 195
Table I.4b – Corrected TRV values for k_{DD} = 1,3 and f_r = 60 Hz	. 197
Table I.4c – Corrected TRV values for k_{pp} = 1,5 and f_r = 50 Hz	. 199
Table I.4d – Corrected TRV values for k_{DD} = 1,5 and f_{r} = 60 Hz	. 199
Table K.1a – Demonstration of arcing times for a first-pole-to-clear factor of 1,5	.219
Table K.1b – Alternative demonstration of arcing times for a first-pole-to-clear factor of 1,5	.221
Table K.2a – Demonstration of arcing times for a first-pole-to-clear factor of 1,3	. 223
Table K.2b – Alternative demonstration of arcing times for a first-pole-to-clear factor of 1,3	.225
Table K.3a – Demonstration of arcing times for a first pole-to clear factor of 1,5	. 229
Table K.3b – Alternative demonstration of arcing times for a first-pole-to-clear factor of 1,5 SIST. EN.62271-101.2006	.231
Table K.4a - Demonstration of arcing times for a first-pole-to-clear factor of 1,3	. 233
Table K.4b – Alternative demonstration of arcing times for a first-pole-to-clear factor of 1,3	.235
Table L.1 – Test procedure for a first-pole-to-clear factor of 1,5	. 257
Table L.2a – Alternative demonstration of arcing times for a first-pole-to-clear factor of 1,3	.259
Table L.2b – Simplified test procedure for a first-pole-to-clear factor of 1,3	.261
Table L.3 – Test procedure for asymmetrical currents in the case of a first-pole-to- clear factor of 1,5	.263
Table L.4 – Test procedure for asymmetrical currents in the case of a first-pole-to- clear factor of 1,3	.265
Table L.5 – Required arcing windows in $^{\circ}$ for different asymmetrical conditions, f_{Γ} = 50 Hz	.271
Table L.6 – Required arcing windows in $^{\circ}$ for different asymmetrical conditions, f_{Γ} = 60 Hz	.273
Table M.1 – Tolerances on test quantities for type tests	.277

INTERNATIONAL ELECTROTECHNICAL COMMISSION

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 101: Synthetic testing

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an EC Publication 14405-e945-4e2e-8e95-9eb7b926554/sist-ep_62271-101-2006
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-101 has been prepared by subcommittee 17A: High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

This first edition cancels and replaces the third edition of IEC 60427 published in 2000. This first edition constitutes a technical revision.

The text of this standard is based on the third edition of IEC 60427 and the following documents:

FDIS	Report on voting
17A/753/FDIS	17A/755/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

62271-101 © IEC:2006

This publication shall be read in conjunction with IEC 62271-100. The numbering of the subclauses of Clause 6 is the same as in IEC 62271-100. However, not all subclauses of IEC 62271-100 are addressed; merely those where synthetic testing has introduced changes.

The IEC 62271-100 series consists of the following parts, under the general title *High-voltage switchgear and controlgear*:¹

- Part 100: High-voltage alternating-current circuit-breakers
- Part 101: Synthetic testing
- Part 102: Alternating current disconnectors and earthing switches
- Part 104: Alternating current switches for rated voltages of 52 kV and above
- Part 105: Alternating current switch-fuse combinations
- Part 107: Alternating current fused circuit-switchers for rated voltages above 1 kV up to and including 52 kV
- Part 108: High voltage alternating current disconnecting circuit-breakers for rated voltages of 72,5 kV and above
- Part 109: Alternating-current series capacitor by-pass switches
- Part 110: Inductive load switching

A list of the other parts belonging to the IEC 62271 series can be found on the IEC website http://www.iec.ch. Further information is available on http://tc17.iec.ch.

iTeh STANDARD PREVIEW

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- SIST EN 62271-101:2006
- reconfirmed; https://standards.iteh.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-
- withdrawn; 9eb7b9f26554/sist-en-62271-101-2006
- replaced by a revised edition, or
- amended.

¹ Some of these parts are still in the process of being developed.

– 15 –

HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –

Part 101: Synthetic testing

1 Scope

This part of IEC 62271 mainly applies to a.c. circuit-breakers within the scope of IEC 62271-100. It provides the general rules for testing a.c. circuit-breakers, for making and breaking capacities over the range of test duties described in 6.102 to 6.111 of IEC 62271-100, by synthetic methods.

NOTE Circuits for the test duties described in 6.111 have not yet been standardized. However, present methods are given in Annex G.

It has been proven that synthetic testing is an economical and technically correct way to test high-voltage a.c. circuit-breakers according to the requirements of IEC 62271-100 and that it is equivalent to direct testing.

The methods and techniques described are those in general use. The purpose of this standard is to establish criteria for synthetic testing and for the proper evaluation of results. Such criteria will establish the validity of the test method without imposing restraints on innovation of test circuitryen STANDARD PREVIEW

(standards.iteh.ai)

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61633:1995, *High-voltage alternating current circuit-breakers – Guide for short-circuit and switching test procedures for metal-enclosed and dead tank circuit-breakers*

IEC 62271-100:2001, *High-voltage switchgear and controlgear – Part 100: High-voltage alternating current circuit-breakers*

IEC 62271-308:2002, High-voltage switchgear and controlgear – Part 308: Guide for asymmetrical short-circuit test duty T100a

3 Terms and definitions

For the purposes of this document, the terms and definitions of IEC 62271-100, as well as the following terms and definitions, apply.

3.1

direct test

test in which the applied voltage, the current and the transient and power-frequency recovery voltages are all obtained from a circuit having a single-power source, which may be a power system or special alternators as used in short-circuit testing stations or a combination of both

62271-101 © IEC:2006

3.2

synthetic test

test in which all of the current, or a major portion of it, is obtained from one source (current circuit), and in which the applied voltage and/or the recovery voltages (transient and power frequency) are obtained wholly or in part from one or more separate sources (voltage circuits)

3.3

test circuit-breaker

circuit-breaker under test (see 6.102.2 of IEC 62271-100:2001)

3.4

auxiliary circuit-breaker(s)

circuit-breaker(s) forming part of a synthetic test circuit used to put the test circuit-breaker into the required relation with various circuits

3.5

current circuit

that part of the synthetic test circuit from which all or the major part of the power-frequency current is obtained

3.6

voltage circuit

that part of the synthetic test circuit from which all or the major part of the applied voltage and/or recovery voltage is obtained ANDARD PREVIEW

3.7

3.7 (standards.iteh.ai) prospective current (of a circuit and with respect to a circuit-breaker)

current that would flow in the circuit if each pole of the test and auxiliary circuit-breakers were replaced by a conductor of negligible impedance .iteh.ai/catalog/standards/sist/b69f44d5-e945-4e2e-8e93-/standard

[IEV 441-17-01, modified]

9eb7b9f26554/sist-en-62271-101-2006

3.8

actual current

current through the test circuit-breaker (prospective current modified by the arc voltage of the test and auxiliary circuit-breakers)

3.9

distortion current

calculated current equal to the difference between the prospective current and the actual current

3.10

post-arc current

current which flows through the arc gap of a circuit-breaker when the current and arc voltage have fallen to zero and the transient recovery voltage has begun to rise

3.11

current-injection method

synthetic test method in which the voltage circuit is applied to the test circuit-breaker before power-frequency current zero

3.12

initial transient making current ITMC

transient current which flows through the circuit-breaker at the moment of voltage breakdown prior to the initiation of current from the current circuit during making