SLOVENSKI STANDARD

SIST EN 61537:2007

marec 2007

Urejanje okablenja – Sistemi kabelskih polic in kabelskih lestvic (IEC 61537:2006)

Cable management - Cable tray systems and cable ladder systems (IEC 61537:2006)

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 61537:2007</u> https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

ICS 29.120.10

Referenčna številka SIST EN 61537:2007(en)

© Standard je založil in izdal Slovenski inštitut za standardizacijo. Razmnoževanje ali kopiranje celote ali delov tega dokumenta ni dovoljeno

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 61537:2007 https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 61537

January 2007

Supersedes EN 61537:2001

ICS 29.120.10

English version

Cable management -Cable tray systems and cable ladder systems (IEC 61537:2006)

Systèmes de câblage -Systèmes de chemin de câbles et systèmes d'échelle à câbles (CEI 61537:2006) Führungssysteme für Kabel und Leitungen -Kabelträgersysteme für elektrische Installationen (IEC 61537:2006)

iTeh STANDARD PREVIEW

This European Standard was approved by CENELEC on 2006-12-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.^{1-136c-4860-a2aa-1009dfa16af/sist-en-61537-2007}

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 2007 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The text of document 23A/513/FDIS, future edition 2 of IEC 61537, prepared by SC 23A, Cable management systems, of IEC TC 23, Electrical accessories, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61537 on 2006-12-01.

This European Standard supersedes EN 61537:2001.

It incorporates additional tables, annexes and figures as well as revisions to such that appeared in EN 61537:2001. In places, the text has been substantially altered including:

- the classification system,
- tests for resistance against corrosion,
- re-written SWL test procedure,
- re-written section on electrical non-conductivity.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement
 (dop) 2007-09-01
- latest date by which the national standards conflicting with the EN have to be withdrawn ANDARD PREV (dow) 2009-12-01
- Annexes ZA and ZB have been added by CENELEC. itch.ai)

SIST EN 61537:2007 https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aafft**Endorsement**3**notice**

The text of the International Standard IEC 61537:2006 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60093 NOTE Harmonized as HD 429 S1:1983 (not modified).

ISO 14713 NOTE Harmonized as EN ISO 14713:1999 (not modified).

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication IEC 60068-2-75	<u>Year</u> 1997	<u>Title</u> Environmental testing Part 2-75: Tests - Test Eh: Hammer tests	<u>EN/HD</u> EN 60068-2-75	<u>Year</u> 1997
IEC 60364-5-52	2001	Electrical installations of buildings Part 5-52: Selection and erection of electrical equipment - Wiring systems	-	-
IEC 60695-2-11	2000	Fire hazard testing Part 2-11: Glowing/hot-wire based test methods - Glow-wire flammability test method for end-products	EN 60695-2-11	2001
IEC 60695-11-2	2003	Fire hazard testing Part 11-2; Test flames - 1 kW nominal pre- mixed flame - Apparatus, confirmatory test arrangement and guidance	EN 60695-11-2	2003
ISO 1461	1999 /sta	Hot dip galvanized coatings on fabricated iron and steel atticles of Specifications and test methods	EN ISO 1461	1999
ISO 2178	1982	Non-magnetic coatings on magnetic substrates - Measurement of coating thickness - Magnetic method	EN ISO 2178	1995
ISO 2808	1997	Paints and varnishes - Determination of film thickness	EN ISO 2808	1999
ISO 4046	Series	Paper, board, pulp and related terms - Vocabulary	-	-
ISO 9227 ¹⁾	1990	Corrosion tests in artificial atmospheres - Salt spray tests	-	-
ISO 10289	1999	Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates - Rating of test specimens and manufactured articles subjected to corrosion tests	EN ISO 10289	2001

 $^{^{\}rm 1)}$ ISO 9227 is superseded by ISO 9227:2006.

Annex ZB

(informative)

A-deviations

A-deviation: National deviation due to regulations, the alteration of which is for the time being outside the competence of the CENELEC member.

This European Standard falls under Directive 73/23/EEC.

NOTE (from CEN/CENELEC IR Part 2:2006, 2.17) Where standards fall under EC Directives, it is the view of the Commission of the European Communities (OJ No C 59, 1982-03-09) that the effect of the decision of the Court of Justice in case 815/79 Cremonini/Vrankovich (European Court Reports 1980, p. 3583) is that compliance with A-deviations is no longer mandatory and that the free movement of products complying with such a standard should not be restricted except under the safeguard procedure provided for in the relevant Directive.

A-deviations in an EFTA-country are valid instead of the relevant provisions of the European Standard in that country until they have been removed.

- Clause Deviation
- 6.2.1 France (Decree from Equipment and Accommodation Minister for low voltage installations dated 22 October 1969)

Classification not allowed.

France (Decree from Equipment and Accommodation Minister for low voltage installations Annex C dated 22 October 1969standards.iteh.ai)

> The use of cable tray systems and cable ladder systems as a PE conductor is not allowed. SIST EN 6153

https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 61537

Deuxième édition Second edition 2006-10

Systèmes de câblage – Systèmes de chemin de câbles et systèmes d'échelle à câbles

Cable management -PREVIEW Cable tray systems and cable ladder systems

SIST EN 61537:2007 https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия CODE PRIX PRICE CODE XC

Pour prix, voir catalogue en vigueur For price, see current catalogue

CONTENTS

FO	REWORD	9
1	Scope	13
2	Normative references	13
3	Terms and definitions	15
4	General requirements	19
5	General conditions for tests	21
6	Classification	23
7	Marking and documentation	29
8	Dimensions	31
9	Construction	33
10	Mechanical properties	35
11	Electrical properties	59
12	Thermal properties	63
13	Fire hazards	63
14	External influences	67
15	Electromagnetic compatibility (EMC) DARD PREVIEW	71
	(standards.iteh.ai)	
Anr	nex A (informative) Sketches of typical cable tray lengths and cable ladder lengths	107
Anr	nex B (informative) Sketches of typical support devices	109
Anr	nex C (informative) Protective earth (PE) function	113
Anr Ioad	nex D (normative) Methods of applying and distributing a UDL for SWL tests using distribution plates	115
Anr	nex E (informative) Typical methods of applying a UDL for SWL tests	131
Anr	nex F (informative) Example for the determination of TDF	135
Anr	nex G (informative) Example for clarification of allowed creep	139
Anr	nex H (informative) Information for a safe installation of pendants with cantilever	
bra	ckets	141
Anr	nex I (informative) Summary of compliance checks	145
Anr cab	nex J (normative) Compliance checks to be carried out for cable tray systems and le ladder systems already complying with IEC 61537:2001	149
Anr	nex K (informative) Environmental categories and corrosion rates for zinc only vanising	153
Anr	nex L (informative) Illustrative flow chart for the SWL tests	100
7 111		100
Bib	liography	161
Fig	ure 1 – Safe working load test – General arrangement	73

Figure 2 – Safe working load test types I, II and III (see 10.3.1 to 10.3.3)	77
Figure 3 – Safe working load test IV (see 10.3.4)	79
Figure 4 – Safe working load for single span test (see 10.4)	79

Figure 5 – Safe working load test for fittings	85
Figure 6 – Test set-up for cantilever brackets	91
Figure 7 – Test set-up for pendants	93
Figure 8 – Impact test stroke arrangement	95
Figure 9 – Test set-up for electrical continuity	97
Figure 10 – Arrangement for the flame test	99
Figure 11 – Enclosure for the flame test	101
Figure 12 – Load and temperature diagrams with respect to time for test 10.2.1.3	103
Figure 13 – Typical arrangement of surface resistivity test	105
Figure A.1 – Solid bottom cable tray lengths	107
Figure A.2 – Perforated cable tray lengths	107
Figure A.3 – Mesh cable tray lengths	107
Figure A.4 – Cable ladder lengths	107
Figure B.1 – Cantilever brackets	109
Figure B.2 – Pendants	111
Figure B.3 – Fixing brackets	111
Figure D.1 – Examples of distribution load points across the width	115
Figure D.2 – Typical arrangement of load distribution plates	117
Figure D.3 – Example of equispaced point loads along the length	119
Figure D.4 – Examples of test load distribution on cable ladder lengths	121
Figure D.5 – <i>n</i> rungs	123
Figure D. 6 – Example of loading on three rungs	125
Figure D.7 – Two rungs	127
Figure D.8 – One rung	127
Figure D.9 – Cantilever with extension	129
Figure E.1 – Point loads applied through a mechanical linkage (testing upside down)	131
Figure E.2 – Point loads applied individually	133
Figure E.3 – Block loads	133
Figure G.1 – Example for clarification of allowed creep	139
Figure H.1 – Forces on pendant and cantilever bracket	141
Figure H.2 – Illustration of the safe area	143
Table 1 – classification for resistance against corrosion	25
Table 2 – Minimum temperature classification	25
Table 3 – Maximum temperature classification	27
Table 4 – Perforation base area classification	27
Table 5 – Free base area classification	27
Table 6 – Impact test values	59
Table 7 – System component compliance and classification for resistance against corrosion	67
Table 8 – Zinc coating thickness of reference materials	69

Table 9 – Salt spray test duration	71
Table D.1 – Number of point loads across the width	115
Table D.2 – Number of point loads along the length	117
Table F.1 – Manufacturer's declared sizes	135
Table F.2 – Cable tray length, 100 mm wide	135
Table F.3 – Cable tray, 400 mm wide	137
Table I.1 – Summary of compliance checks	145
Table J.1 – Required compliance checks	149
Table K.1 – Environmental categories and corrosion rates for zinc only galvanising	153

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 61537:2007 https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CABLE MANAGEMENT -CABLE TRAY SYSTEMS AND CABLE LADDER SYSTEMS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC provides no marking procedure to indicate its japproval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. https://standards.iteh.av/catalog/standards/sist/86f29fdf-f36c-4860-a2aa-
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61537 has been prepared by subcommittee 23A: Cable management systems, of IEC technical committee 23: Electrical accessories.

This second edition cancels and replaces the first edition published in 2001. This edition constitutes a technical revision. It incorporates additional tables, annexes and figures as well as revisions to such that appeared in the first edition. In places, the text has been substantially altered including:

- the classification system,
- tests for resistance against corrosion,
- re-written SWL test procedure,
- re-written section on electrical non-conductivity.

The text of this standard is based on the following documents:

FDIS	Report on voting	
23A/513/FDIS	23A/524/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The following differences exist in some countries:

In the USA it is permitted to use cable tray systems and cable ladder systems as a PE conductor, in which case national wiring regulations have to be adhered to.

In France it is not permitted to use cable tray systems and cable ladder systems as a PE conductor.

In France the use of flame propagating cable tray and cable ladder systems is not permitted.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- (standards.iteh.ai)
- · replaced by a revised edition, or
- amended.

<u>SIST EN 61537:2007</u> https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aaff0f9dfa16af/sist-en-61537-2007

CABLE MANAGEMENT – CABLE TRAY SYSTEMS AND CABLE LADDER SYSTEMS

1 Scope

This International Standard specifies requirements and tests for cable tray systems and cable ladder systems intended for the support and accommodation of cables and possibly other electrical equipment in electrical and/or communication systems installations. Where necessary, cable tray systems and cable ladder systems may be used for the division or arrangement of cables into groups.

This standard does not apply to conduit systems, cable trunking systems and cable ducting systems or any current-carrying parts.

NOTE Cable tray systems and cable ladder systems are designed for use as supports for cables and not as enclosures.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

(standards.iteh.ai)

IEC 60068-2-75:1997, Environmental testing – Part 2-75: Tests – Test Eh: Hammer tests

SIST EN 61537:2007

IEC 60364-5-52:2001; *Electrical installations* of buildings: Part 5-52: Selection and erection of electrical equipment – Wiring systems) dfa16af/sist-en-61537-2007

IEC 60695-2-11:2000,: Fire hazard testing - Part 2-11:Glowing/hot-wire based test methods – Glow-wire flammability test method for end-products

IEC 60695-11-2:2003, Fire hazard testing - Part 11-2: Test flames - 1 kW nominal pre-mixed flame - Apparatus, confirmatory test arrangement and guidance

ISO 1461:1999, Hot dip galvanized coatings on fabricated iron and steel articles – Specifications and test methods

ISO 2178:1982, Non-magnetic coatings on magnetic substrates - Measurement of coating thickness - Magnetic method

ISO 2808:1997, Paints and varnishes - Determination of film thickness

ISO 4046 (all parts), Paper, board, pulp and related terms – Vocabulary

ISO 9227:1990, Corrosion tests in artificial atmospheres – Salt spray tests

ISO 10289:1999, Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates - Rating of test specimens and manufactured articles subjected to corrosion tests

Terms and definitions 3

For the purpose of this document, the following definitions apply.

3.1

cable tray system or cable ladder system

assembly of cable supports consisting of cable tray lengths or cable ladder lengths and other system components

3.2

system component

part used within the system. System components are as follows:

- a) cable tray length or cable ladder length
- b) cable tray fitting or cable ladder fitting
- c) support device
- d) mounting device
- e) system accessory

NOTE System components may not necessarily be included together in a system. Different combinations of system components may be used.

3.3

cable tray length

system component used for cable support consisting of a base with integrated side members or a base connected to side members and ards.iteh.ai)

NOTE Typical examples of cable tray types are shown in Figures A.1 to A.3.

SIST EN 61537:2007

https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aa-cable ladder length

ff0f9dfa16af/sist-en-61537-200

system component used for cable support consisting of supporting side members, fixed to each other by means of rungs

NOTE Typical examples of cable ladder types are shown in Figure A.4.

3.5

fitting

system component used to join, change direction, change dimension or terminate cable tray lengths or cable ladder lengths

NOTE Typical examples are couplers, bends, tees, crosses.

3.6

cable runway

assembly comprised of cable tray lengths or cable ladder lengths and fittings only

3.7

support device

system component designed to provide mechanical support and which may limit movement of a cable runway

NOTE Typical examples of support devices are shown in Annex B.

3.8

mounting device

system component used to attach or fix other devices to the cable runway

3.9

apparatus mounting device

part used to accommodate electrical apparatus like switches, socket outlets, circuit- breakers, telephone outlets, etc. which can be an integral part of the electrical apparatus and which is not part of the cable tray system and cable ladder system

3.10

system accessory

system component used for a supplementary function such as cable retention, and covers, etc.

3.11 BLANK

3.12

metallic system component

system component which consists of metal only. Screws for connections and other fasteners are not considered

3.13

non-metallic system component

system component which consists of non-metallic material only. Screws for connections and other fasteners are not considered

iTeh STANDARD PREVIEW

3.14

3.15

composite system component (standards.iteh.ai) system component which consists of both metallic and non-metallic materials. Screws for connections and other fasteners are not considered

https://standards.iteh.ai/catalog/standards/sist/86f29fdf-f36c-4860-a2aa-

3.15 f0/9dfa16af/sist-en-61537-2007 non-flame propagating system component

system component which may catch fire as a result of an applied flame and the resulting flame does not propagate and extinguishes itself within a limited time after the applied flame is removed

3.16

external influence

presence of water, oil, building materials, corrosive and polluting substances, and external mechanical forces such as snow, wind, and other environmental hazards

3.17

safe working load

SWL

maximum load that can be applied safely in normal use

3.18

uniformly distributed load

UDL

load applied evenly over a given area

NOTE Methods of applying uniformly distributed loads are shown in Annexes D and E.

3.19

span

distance between the centres of two adjacent support devices