INTERNATIONAL STANDARD

ISO 9188

First edition 1993-04-01

Machine tools — Straight-sided single-action mechanical power presses from 400 kN up to and including 4 000 kN iTeh sominal force representations and dimensions (standards.iteh.ai)

https://standards. Machines-outils — Presses mécaniques à bâți en arcade, à simple effet, de force nominale comprise entre 400 kN et 4 000 kN inclus — Caractéristiques et dimensions

1JU

Reference number ISO 9188:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting VIEW a vote.

International Standard ISO 9188 was prepared by Technical Committee ISO/TC 39, *Machine tools*. ISO 9188:1993

Annex A of this International: Standarduis: fon information: only/sist/47435510-3982-4a18-9f3d-2faa3c306693/iso-9188-1993

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Machine tools — Straight-sided single-action mechanical power presses from 400 kN up to and including 4000 kN nominal force — Characteristics and dimensions

1 Scope

This International Standard specifies the characteristics and dimensions of straight-sided single-action mechanical power presses from 400 kN up to and including 4 000 kN nominal force. It applies to machines intended for single or continuous operation and to geared or ungeared 1-, 2- or 4-point machines arcs.

The nominal energy is selected according to the type of work for which the press is required.

2.5 shut height, e_1 : Distance from the bedplate surface to the slide surface measured with the maximum variable stroke, stroke down and slide adjustment up.

Since in general the shut height is adjusted by the use of sub-bolsters or packers, it is useful to specify val-

2 Definitions

ISO 9188:1990es in accordance with an arithmetic progression in https://standards.iteh.ai/catalog/standards/sisp/feflerred)steps-of11003 mm.

For the purposes of this International Standard Othes/iso-9188-1993 following definitions apply.

2.1 nominal force, F_n: Maximum allowable pressing force which may act, before the bottom of stroke, through a given distance [the nominal force travel h_n (see 2.7)], as frequently as required without damaging the press.

2.2 bed cushion force, F₁: Force related approximately to the nominal force, at an air pressure of 0,5 MPa, as follows:

 $F_{\rm t} \approx 0.2F_{\rm n}$

2.3 slide knockout force, Fk: Force related approximately to the nominal force as follows:

 $F_{\rm k} \approx 0.1 F_{\rm n}$

2.4 nominal energy, Wn: Energy output obtained during a slide stroke in continuous operation. It is related to a given reduction in the flywheel speed of rotation.

The nominal energy W_n is related to the nominal force $F_{\rm n}$ (see 2.1) and to the nominal force travel $h_{\rm n}$ (see 2.7) and, where a cushion is used, to the bed cushion force F_{t} (see 2.2) as well as to that part of the cushion travel h, which can be utilized with maximum cushion force.

2.6 bed to slide distance, *e*₂: Distance from the bed surface to the slide surface measured with the maximum variable stroke, stroke down and slide adjustment up.

2.7 nominal force travel, h_n: Maximum distance, above the bottom of the stroke of the slide, from which point downwards the nominal force F_n may act as frequently as required without damaging the press.

The nominal force travel h_n , together with the nominal force F_{n} , indicate the rating of the drive.

The nominal force travel is not directly related to the nominal energy W_n .

Characteristics and dimensions 3

Mechanical single-action straight-sided power presses may be provided with a crank, eccentric, toggle or knuckle-joint drive mechanism.

Figure 1 shows a typical construction of a straightsided single-action mechanical power press; this figure is a schematic representation only and is not intended to affect the manufacturer's design.

The characteristics and dimensions shall be selected from tables 1 to 8; values given in parentheses are non-preferred. Manufacturers are free to choose those combinations of characteristics and dimensions to best suit their own requirements.

The nominal pressure is the gauge pressure and is above atmospheric pressure (see ISO 2944:1974,

Fluid power systems and components — Nominal pressures). To allow tool interchangeability, the pitch p of slide knockouts shall be 225 mm. The number of slide knockouts is dependent on the machine design.

ISO 9188:1993(E)

Table 1

Force in kilonewtons

Nominal force, <i>F</i> ⁿ ¹⁾ (see 2.1)	400	630	(800)	1 000	(1 250)	1 600	(2 000)	2 500	(3 150)	4 000		
Bed cushion force, $F_t^{(2)}$ (see 2.2)	80	125	160	200	250	315	400	500	630	800		
Slide knockout force, F_k (see 2.3)	40	63	80	100	125	160	200	250	315	400		
 The preferred value At an air pressure 	 The preferred values correspond to the R5 series of preferred numbers. At an air pressure of 0.5 MPa 											

Table 2

Energy in kilojoules

	1,25	1,6	2	2,5	3,15	4	5	
Nominal energy, $W_{\rm n}$ ¹⁾ (see 2.4)	6,3	8	10	12,5	16	20	25	
······································	31,5	40	50	63	80	100	125	160
1) Values correspond to the R10	series of pro	eferred nur anda	nbersD rds.ite	PREV eh.ai)	IEW			
1 The values given are those mo	st frequentl	y used in p <u>ISO</u>	oractice. 9188:1993					
2 The number of strokes permin	uterand the	reduction	nithe flywh	eel speed s	hallubespe	cified, toget	ther with th	e nominal
energy.		2faa3c3066	93/iso-9188	1993				

2faa3c306693/iso-9188-1993

Bedplate and slide width (left to right), $x_0^{(1)}$	mm	630	800	1 000	1 300	1 600	1 900	2 200	2 500	2 800	3 100
Pressure pin plate width, $x_2^{(2)}$	mm			700	1 000	1 300	1 600	1 900	2 200	2 500	2 800
Pressure pin rows, r _x				5	7	9	11	13	15	17	19

Table 3

1) Values in accordance with an arithmetic series for hole spacings for pressure pins of 150 mm. For values greater than 1 000 mm, the preferred step is 300 mm.

2) Values related to the bedplate and slide width x_0 .

The values for x_2 are found from the relationship

 $x_2 = (r_x - 1) 150 + 100$ for $r_x = 5, 7, 9, ...$

Table 4

Bedplate and slide depth (front to back), y ₀ ¹⁾	mm	500	630	800	1 000	(1 150)	1 300	(1 450)	1 600	(1 750)	1 900	2 200
Pressure pin area depth, $y_2^{(2)}$	mm				700	700	1 000	1 000	1 300	1 300	1 600	1 900
Pressure pin rows, r _y					5	5	7	7	9	9	11	13
Upright opening width, $y_3^{(3)}$	mm	250	315	400	550	550	550	700	850	1 000	1 150	1 300

1) Values in accordance with an arithmetic series for hole spacings for pressure pins of 150 mm. For values greater than 1 000 mm, the preferred step is 300 mm.

2) Values related to the bedplate and slide depth y_0 . The values for y_2 are found from the relationship

 $y_2 = (r_y - 1) 150 + 100 \text{ pour } r_y = 5, 7, 9, \dots$

3) The upright opening is not intended for tool removal.

Table 5 iTeh STANDARD PREVIEW

Dimensions in millimetres

Shut height, e_1 (see 2.5)	306ta)	ndaords	itemai	600	700	800				
Slide adjustment, $h_v^{(1)}$	75 danda itab ai/aa	<u>IS100188:1</u>	993 125	150	175	200				
Upright opening height, Z ²) $https://staildards.tich.a/catalog/standards/sist/47435510-5982-4a18-9130-2faa3c306693/iso-9188-199Z = e_1 - h_r$										

As this results in a reduction in the shut height, it is useful to associate it with the shut height in steps of 25 mm.
 The upright opening is not intended for tool removal. The height Z of the upright opening should not exceed the minimum shut height.

Table 6

Dimensions in millimetres

Bedplate thickness, s ¹	75	100	125	150	175	200				
 Depends on the size of the pressure istics. An arithmetic progression is selec 	Depends on the size of the pressure pin area (bed opening), the nominal force and the required deflection character- istics. An arithmetic progression is selected in preferred steps of 25 mm									

Table 7

Dimensions in millimetres

Slide stroke, H ¹⁾	80	100	125	160	200	250	315	400	(450)	500
Bed cushion travel, $h_t^{(2)}$	40	40	63	63	100	100	125	125	160	160
Slide knockout travel, h_k^{3}	16	20	25	32	40	50	63	80	90	100

1) The preferred values correspond to the R10 series of preferred numbers.

2) When dimensioning the nominal energy W_n , that part of the cushion travel through which the cushion force acts shall be additionally specified.

3) The slide knockout travel h_k is equal to

 $h_{\rm k} \approx 0,2H$

Table 8

Dimensions in millimetres

Nominal force travel, h _n (see 2.7)	3,5	7	12,5	25	
--	-----	---	------	----	--

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9188:1993</u>

https://standards.iteh.ai/catalog/standards/sist/47435510-3982-4a18-9f3d-2faa3c306693/iso-9188-1993

Annex A

(informative)

Bibliography

[1] ISO 6898:1984, Open front mechanical power presses — Capacity ratings and dimensions.

- [2] ISO 8540:—¹⁾, Open front mechanical power presses Vocabulary.
- [3] ISO 9189:1993, Machine tools Straight-sided high-speed mechanical power presses from 250 kN up to and including 4 000 kN nominal force Characteristics and dimensions.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9188:1993</u> https://standards.iteh.ai/catalog/standards/sist/47435510-3982-4a18-9f3d-2faa3c306693/iso-9188-1993

¹⁾ To be published.

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 9188:1993

https://standards.iteh.ai/catalog/standards/sist/47435510-3982-4a18-9f3d-2faa3c306693/iso-9188-1993