INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Bases for design of structures — Actions due to the self-weight of structures, non-structural elements and stored materials — Density

Bases de calculs des constructions – Actions dues au poids propre des structures, des éléments non structuraux et des matériaux entreposés – Masses volumiques

Document Preview

<u>ISO 9194:198'</u>

https://standards.iteh.ai/catalog/standards/iso/3d40413f-9ee7-4bae-831c-0f5d5e74d8c3/iso-9994-1987

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 9194 was prepared by Technical Committee ISO/TC 98, Bases for design of structures.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

<u>ISO 9194:1987</u>

https://standards.iteh.ai/catalog/standards/iso/3d40413f-9ee7-4bae-831c-0f5d5e74d8c3/iso-9194-1987

© International Organization for Standardization, 1987 •

Bases for design of structures — Actions due to the self-weight of structures, non-structural elements and stored materials — Density

0 Introduction

General principles on reliability of structures are given in ISO 2394.

Since at the moment, only insufficient statistical data of densities are available, the values given in this International Standard are deterministic ones. In general they may be interpreted as mean values of densities.

Even these mean values are in some cases different for the same material from one country to another. This is the reason for giving a range of two values for one material in this International Standard.

Each country in its relevant standards should use its traditional values which are in the indicated range.

1 Scope and field of application

This International Standard defines the actions due to the selfweight of structures, non-structural elements and stored materials. It gives the numerical values of their densities.

These actions are to be determined by multiplying the densities by the gravitational acceleration and by the actual volume. The actions caused by the weight of the earth placed on the structures are similarly calculated.

2 Reference

ISO 2394, General principles on reliability of structures.

3 General

3.1 The most important value in determining actions due to the self-weight of structures, non-structural elements and/or that of stored materials is the density.

3.2 For materials having all three dimensions of the same order of magnitude, the densities are expressed in kilograms per cubic metre (kg/m³). For roofings (sheeting materials) having one dimension of smaller order of magnitude than the other two dimensions, the similar quantity will be surface

density, expressed in kilograms per square metre (kg/m²) (mass related to surface area).

3.3 In some countries roofings are considered to be external load, causing pressure on the structure (by analogy with, for example, snow load) — consequently these are expressed in newtons per square metre (N/m^2) or in pascals ¹).

For this reason, roofings (see annex A) are given as surface pressures, together with the values of surface density.

3.4 Densities of stored materials substantially depend on how they are placed. Usually two methods of stocking are distinguished:

a) disorderly storage of materials;

b) orderly storage of materials.

Disorderly or bulky stored materials are stored without bales, forming a natural heap. Orderly stored materials are stored in stocks or piles with or without bales.

4 Density values

4.1 The representative value of the density of materials and/or components of structures, non-structural elements and stored materials is in general determined by the mean value.

The representative value is generally represented by a unique value. In actual design situations, densities may alter due to the difference in quality of workmanship, moisture content, etc. The representative value of the density of earth is represented in the same manner, bearing compactness in mind.

4.2 The representative values of densities of structures and non-structural elements are given in a table in annex A; the representative values of densities of stored materials and densities of earth placed on structures are similarly given in annex B.

4.3 Where the tables give only one density value for one material (or soil), this means that the corresponding nominal values do not normally differ significantly (up to ± 5 %) in dif-

^{1) 1} Pa = 1 N/m^2

ferent countries and the indicated mean value is the average of the nominal values. The range of two values of densities given in the annexes for one material indicates that the mean values of densities for different countries vary between the indicated ones.

This also refers to the angles of repose. However, it should be emphasized that in accordance with the national practice of different countries, angles of repose differ up to $\pm 30~\%$ from those indicated in annex B. Thus values of angles of repose given in annex B are approximate.

,

4.4 For the time being, only limited statistical data are available and the values given in annexes A and B are based on relevant national practice.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 9194:1987</u>

https://standards.iteh.ai/catalog/standards/iso/3d40413f-9ee7-4bae-831c-0f5d5e74d8c3/iso-9194-1987

Annex A

Representative values of densities of structural and of non-structural elements

(This annex forms an integral part of the Standard).

This annex gives representative values of the densities of structural and non-structural elements in the form of a table.

Material	Density kg∕m³	Material	Density kg∕m³
Wood and substitutes ¹⁾ (air-dried,		Building bricks and blocks	
about 15 % humidity)		Solid burnt clay brick	
Hardwood		up to 14 MPa (inclusive) compressive	
Beech tree (<i>Fagus sylvatica</i>)	680	strength	1 600
Oak tree (<i>Quercus</i>)	690	Perforated brick (boles through the brick	1 000
Peduncular oak (<i>Quercus robur</i>) Brazilian rosowood (<i>Dalbergia nigra</i>)	640 800	exceed 25 % of its volume)	
Turkey oak (<i>Quercus cerris</i>)	640 to 770	hollow brick	820 to 1 350
Yew tree (Taxus baccata)	640	perforated brick	1 150 to 1 450
Australian hardwood		Lime-sand brick	1 700
Box grey (Eucalyptus microcarpa)		Cob brick, adobe	1 600
Penda, brown (<i>Xanthostemon chrysanthus</i>)	1 120	Refractory brick for general purposes	
Softwood	/standa	fireclay	1 850
Black nine (<i>Pinus Jaricin</i>)	570	silica (dinas)	2 100
Larch tree (Larix decidua)	550	D magnesite	2 800
Norway spruce (<i>Picea</i>)	430	chrome magnesite	3 000
Spruce fir (<i>Pinus eccelsa</i>)	380 to 440	corundum	2 600
Scotch pine (<i>Pinus silvestris</i>)	490	Covering bricks	
VVnite Willow (Salix alba) Giant poplar (Populus alba)	410	Minside wall-covering	1 600
Trembling poplar (<i>Populus tremula</i>)	/iso/3d40450f-	eoutside façade covering 5e74d8c3/iso-914	4-1987 1 800
Ocume (Ocume)	410		2 000
Conifers	400 to 600	with 2 MPa compressive strength	500
Extruded chipboard	500 to 750	with 5 MPa compressive strength	700
Fibreboard		with 7,5 MPa compressive strength	900
hard	900 to 1 100	Acid-resistant brick	2 000
medium-hard	600 to 850	Tuff block with 5 MPa compressive strength	1 100
porous insulating	250 to 400	Glass brick, double-walled	870 to 1 100
Plywood	750 to 850	Mortars	
Coreboard	450 to 650	Lime mortar	1 200 to 1 800
Natural building stance		Lime cement mortar	1 750 to 2 000
Natural building stones	2 650 to 2 000	Cement mortar (with 2,5 MPa or greater	
Magmatic platonic rocks	2 500 to 3 000	compressive strength)	2 100
	2 500 to 2 850	Rock floor mortar	1 600
	1 400 10 2 000	Gypsum mortar	1 200 to 1 800
Sedimentary rocks	0 700	Fireciay mortar	1 900
sandstone	2 700		340
porous limestone	1 700 to 2 200	avpsum	340
fresh-water limestone	2 400	cement	440
compact limestone	2 650 to 2 800	Bitumen mortar with river sand	1 700
dolomite	2 800		
Transformed rocks		Concrete ²⁾	
clay slate	2 600	Gravel concrete	2 250 to 2 500
marble	2 700	Basalt concrete	2 300 to 2 500

Material	<mark>Density</mark> kg∕m³	Material	<mark>Density</mark> kg∕m ³
Crushed rock concrete	2 200 to 2 500	Tuff concrete, medium size building block	1 200
C3-C35 Blast furnace foam slag concrete	2 300 10 2 500	Gas silicate, medium size building block	600 to 800
C3-C10	1 600 to 1 900	2,5 to 5 MPa compressive strength	800 to 1 100
Aerated and gas concrete		5 to 10 MPa compressive strength	900 to 1 300
C1,5-C5	600 to 1 500	10 to 20 MPa compressive strength	1 000 to 1 600
Expanded clay gravel concrete	700 +- 1 700	Inside wall-covering brick	1 700
	700 to 1 700	Outside façade brick Clinker brick	2 000
	350 to 700	Fireclay brick (in fireclay mortar)	2 000
		Acid-resistant brick (in bitumen mortar)	1 900
C3-C6	1 400 to 1 600	Glass brick, double-walled	
Lightweight aggregate concrete using sintered		(in cement mortar)	1 100
pulverized fuel ash aggregates	1 600 to 1 850	Glass brick, coupled on one side	
Heat insulating gas concrete	300 to 900	(in cement mortar)	870
Heat insulating pearlite brick and pipeshell	260		
Angragates and fillers		Metals for structures	
Aggregates and mers	1 550	Structural steel	7 850
Sanu	1 700	Cast iron structure	7 100
	1 500 to 1 600	Aluminium	2 700
Blast furnace foam slag	1 700		
Blast furnace slag, granulated	1 200	Covering and other building material	
Crushed slag stope of 5 to 40 mm grain size	1 500	Asphalt, pure	2 200
Aerated silicate	1 000	Bitumen	1 000 to 1 400
Pulverized fuel ash (pozzolan) for use as a	s://stai	Tar (pitch)	1 100 to 1 400
cementitious component in concrete (bulk		Asbestos cement roofing and covering board	1 800 to 2 100
density)	800 to 1 050	Asbestos cement corrugated board	1 600
Lightweight concrete aggregate (Lytag) (bulk	750 to 1 000	Asbestos cement pipe	1 800
density)	750 to 1 000	Cellulose acetate panel	1 300
Lightweight aggregate using sintered pulverized	1 700 to 2 000	Cement tile	2 400
		Mosaic tile	2 200
Masonry from natural stones	ndaras/1so/304(Concrete flagstone	2 200
Rocks of initial setting		Tile	1 750 to 2 000
basalt malphir, diorit, gabbro	3 000	Face brick (hard façade brick)	2 500
basalt lava	2 400	Stoneware tile	2 400
granite syngenit porphyt	2 800	Soft covering brick	4 050
trachyt	2 600	holed	1 350
Sedimentary rock		Fnoxy resin	1 000
graywacke, sandstone, puddingstone	2 700	without filler	1 150
dense limestone, dolomite, shell limestone	2 900	with mineral matter	2 000
and marble	2 000	with fibreglass	1 800
(e.g. travertin, etc.)	2 600	Fenoplast	1 500
volcanic tuff	2 000	Rubber floor	1 800
Transformed rocks			1 100
gneiss, granulite	3 000	Polyamide (e.g. diamid)	1 100
slate serpantine	2 800	Polyester resin, without filler	1 350
os partano		Polyethylene	930
Brick masonry ³⁾		Polyisobutylene-base board	1 350
Ordinary brick	1 500	Polymethylacrylate	1 150
Solid burnt clay brick		Polypropylene	930
up to 14 MPa (inclusive) compressive strength	1 500 to 1 700	PVC hardboard	1 400
over 14 MPa compressive strength	1 900	PVC flooring board	1 600
Walls made from brick with holes		PVC flooring tile	1 700
or ceramic blocks (depending on the		Flat glass	2 600
type of brick and blocks used)	1 150 to 1 450	Armoured glass	3 000