INTERNATIONAL STANDARD

ISO 9279

First edition 1992-03-01

Uranium dioxide pellets — Determination of density and total porosity — Mercury displacement method

iTeh STANDARD PREVIEW

Pastilles de dioxyde d'uranium — Détermination de la masse volumique et de la porosité totale — Méthode de déplacement du mercure

<u>ISO 9279:1992</u> https://standards.iteh.ai/catalog/standards/sist/118c21d3-0513-4b9b-b1a6f308cd6b1170/iso-9279-1992

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

International Standard ISO 9279 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Sub-Committee SC 5, Nuclear fuel technology. ISO 9279:1992

https://standards.iteh.ai/catalog/standards/sist/118c21d3-0513-4b9b-b1a6f308cd6b1170/iso-9279-1992

© ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Uranium dioxide pellets — Determination of density and total porosity — Mercury displacement method

Scope 1

This International Standard describes a method for determining the density and total porosity of sintered UO₂ pellets. The method can be applied to other bodies, for example green pellets, UO₂-PuO₂ and UO₂-Gd₂O₃ pellets, and also to irradiated material in hot cells. Fractured pieces of a pellet can also be tested. The mass of the specimen should not be less than about 1 g.

2 Principle

3.4 Thermometer, for measuring the temperature of mercury to the nearest 0,1 K.

4 Procedure

SAFETY PRECAUTIONS - Standard precautions shall be observed when handling uranium dioxide samples and mercury.

iTeh STANDARD P Calibration W

(standards.ifinehcanbration of the balance shall be checked periodically according to the control plan which defines frequency and acceptable range.

The method is based on the determination of the 270:10 pellet volume by displacement of mercury which ards/sist/1 18c21d3-0513-4b9b-b1a6 does not penetrate the open pores due to its sufface, 0/iso-94,219Sample preparation and determination of tension. The density and the total porosity are deits mass termined by this volume and the mass of the pellet.

3 **Apparatus**

3.1 Mercury pycnometer, consisting of two chambers and a mercury collection flask. The flanges of these components of the glass apparatus are sealed with vacuum grease. (See figure 1.)

The sample should occupy at least 10 % of the volume of chamber II (see figure 1).

The purity of the mercury shall be at least 99,99 %.

NOTE 1 Excessive use of grease should be avoided to prevent errors when the joint is separated for weighing.

3.2 Vacuum system, capable of reaching a vacuum of at least 1 Pa.

3.3 **Balance**, with an accuracy of ± 0.1 mg.

4.2.1 Wash the pellet or the pieces of a pellet in acetone followed by ethanol.

4.2.2 Dry the sample for 1 h in a vacuum of approximately 10 Pa.

4.2.3 Determine the mass (m) of the sample to the nearest 0.1 mg.

4.3 Determination of the void volume of chamber II (see figure 1)

4.3.1 Fill chamber I with sufficient mercury to exceed the volume of chamber II. Determine the mass (m'_{1}) of chamber I filled with mercury, to the nearest 0,1 mg.

4.3.2 Assemble the mercury pycnometer with the sealing flanges.

4.3.3 Keep tap I closed and evacuate the pycnometer through tap II down to approximately 1 Pa, after connecting chambers I and II.

4.3.4 Close tap II and open tap I in order to fill up the void volume of chamber II with mercury from chamber I.

4.3.5 After equilibrium pressure and temperature is reached, close tap I and release the mercury to the collection flask below chamber II.

4.3.6 Determine again the mass (m'_2) of chamber I filled with the rest of mercury, to the nearest 0,1 mg.

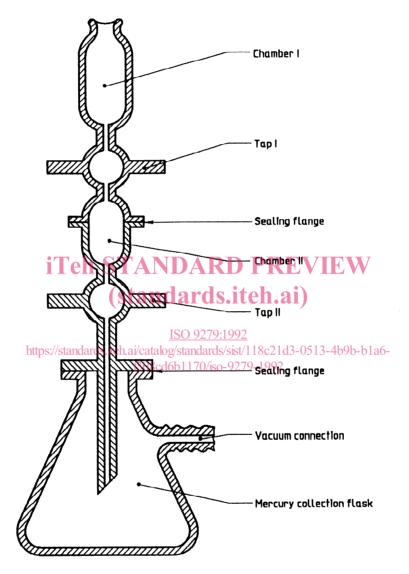


Figure 1 – Apparatus for density measurement by the mercury displacement method

4.3.7 Measure the temperature of the mercury to the nearest 0,1 K and determine its density (ρ_{Hg}) using table 1 and by interpolation. The temperature of the mercury should not change by more than \pm 0,5 K during the measurement procedure.

The determination of the void volume ($V_{\rm II}$) of chamber II is performed before each sample measurement.

Table	1 —	Density o	f mercury	as a	function	of
te	mpe	rature at a	tmospher	ic pre	essure	

Temperature Density Method of calculation 5.1 °C g/cm³ 5.1.1 Calculation of the void volume of chamber II 13,5705 10 13,5680 11 Calculate the void volume (V_{μ}) of chamber II, in cu-12 13,5655 13,5631 bic centimetres, using the equation 13 13,5606 14 $V_{\rm H} = \frac{m_{\rm 1}' - m_{\rm 2}'}{\varrho_{\rm Hg}}$ 15 13,5582 . . . (1) 13,5557 16 13,5533 17 18 13,5508 where 13,5483 19 m' is the mass (4.3.1), in grams, of chamber I partially filled with mercury en 13,5459 20 13,5435 21 before filling up the void volume of 18 standard **s.iteh.ai**) chamber II; 22 13,5385 23 24 13,5361 m'_{2} is the mass (4.3.6), in grams, of 25 13,5336 ISO 9279:1992 chamber I partially filled with mercury https://standards.achad/Catalog/standards/sist/118c21d3-05 26 after filling up the void volume of cham-13,528-308cd6b1170/iso-9279-1992 27 ber II: 28 13,5238 29 is the density of mercury, in grams per ℓ_{Hg} cubic centimetre, at the temperature of 30 13,5214 13,5189 31 measurement. 13,5165 32 33 13,5141 5.1.2 Calculation of density and total porosity 34 13,5116 35 13,5092 36 13.5067 Calculate the density (ϱ) , in grams per cubic centi-37 13,5043 metre, of the pellet using the equation 38 13,5018 39 13,4994 $\varrho = \frac{m}{V_{\rm H} - \frac{m_1 - m_2}{\rho_{\rm Ha}}}$...(2) 40 13,4970 13,4945 41 13,4921 42 Calculate the total porosity (P_{tot}), in percentage by 43 13,4896 volume, of the pellet according to the equation 44 13,4872 45 13,4848

4.4 Determination of density and total porosity

4.4.1 At the end of the procedure described in 4.3, put the sample prepared in 4.2 into chamber II of the apparatus.

4.4.2 Repeat the procedure described in 4.3. Determine the mass (m_1) of chamber I before filling up chamber II and the mass (m_2) of chamber I after filling up chamber II as described in 4.3.1 to 4.3.7.

Perform the measurement on each sample at least three times. The result is given by the average values of these three determinations of density and total porosity.

5 Expression of results

where

- m is the mass of the pellet (4.2), in grams;
- m₁ is the mass (4.4.2), in grams, of chamber I containing the mercury before filling up chamber II which contains the pellet;

- m₂ is the mass (4.4.2), in grams, of chamber I containing the mercury after filling up chamber II which contains the pellet;
- ϱ_{th} is the theoretical density of the material (10,96 g/cm³ for UO₂).

5.2 Precision

Provided that the sample mass exceeds 5 g and the sample occupies at least 10 % of the volume of chamber II, the following statements are valid.

- a) The relative standard deviation for the mercury displacement method is \pm 0,5 % for the density determination.
- b) The absolute standard deviation for the total porosity determination is \pm 0,3 % (*V*/*V*), in the

density range between 90 % and 98 % of the theoretical density of UO_2 .

6 Test report

The test report shall include the following information:

- a) a reference to this International Standard;
- b) all details necessary for identification of the test sample;
- c) the test method used;
- d) the results obtained;
- e) all operations not specified in this International Standard;
- f) details of any occurrence which may have affected the results.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9279:1992</u>

https://standards.iteh.ai/catalog/standards/sist/118c21d3-0513-4b9b-b1a6f308cd6b1170/iso-9279-1992

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 9279:1992

.

https://standards.iteh.ai/catalog/standards/sist/118c21d3-0513-4b9b-b1a6f308cd6b1170/iso-9279-1992

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9279:1992</u> https://standards.iteh.ai/catalog/standards/sist/118c21d3-0513-4b9b-b1a6f308cd6b1170/iso-9279-1992

UDC 661.879.1.22-12:621.039.54:531.755:539.217

Descriptors: nuclear energy, nuclear fuels, pelletized materials, uranium, dioxides, tests, determination, density (mass/volume), porosity, penetration tests.

Price based on 4 pages

-