

Edition 2.0 2017-03

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Wind energy generation systems DARD PREVIEW Part 12-1: Power performance measurements of electricity producing wind turbines

Systèmes de génération d'énergie éolienne. Partie 12-1: Mesures de performance de puissance des éoliennes de production d'électricité

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad Slandard

IEC publications search - www.iec.ch/searchpub

variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20/000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

The advanced search enables to find IEC publications by 4a0-1651000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

65 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 2.0 2017-03

INTERNATIONAL STANDARD

NORME **INTERNATIONALE**

Wind energy generation systems DARD PREVIEW Part 12-1: Power performance measurements of electricity producing wind turbines

IEC 61400-12-1:2017 Systèmes de génération d'énergie géoliennet to 6b43db0-b0ba-41a0-baaa-Partie 12-1: Mesures de performance de puissance des éoliennes de production d'électricité

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE **INTERNATIONALE**

ICS 27.180

ISBN 978-2-8322-3823-3

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

® Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FO	REWO	PRD	13
INT	RODU	JCTION	15
1	Scop	e	16
2	Norm	native references	16
3	Term	is and definitions	17
4	Symb	bols and units	20
5	Powe	er performance method overview	23
6	Prep	aration for performance test	
Ģ	3 1	General	
e	5.2	Wind turbine and electrical connection	27
6	5.3	Test site	27
	6.3.1	General	27
	6.3.2	Location of the wind measurement equipment	27
	6.3.3	Measurement sector	28
	6.3.4	Correction factors and uncertainty due to flow distortion originating from	
7	Test	topography	28
	rest	iTeh STANDARD PREVIEW	29
-	/.1 z o		29
1	1.Z 7.0.1	(standards.iten.al)	29
	727	General requirements for meteorological mast mounted anemometers	29 30
	723	Top-moj/mtedualpemoinetersstandards/sist/b6b43db0-b0ba-41a0-baaa-	
	7.2.4	Side-mounted anemometers ^{b/iec-61400-12-1-2017}	31
	7.2.5	Remote sensing device (RSD)	31
	7.2.6	Rotor equivalent wind speed measurement	32
	7.2.7	Hub height wind speed measurement	32
	7.2.8	Wind shear measurements	32
7	7.3	Wind direction	34
7	7.4	Air density	34
7	7.5	Rotational speed and pitch angle	35
7	7.6	Blade condition	35
7	7.7	Wind turbine control system	35
7	7.8	Data acquisition system	35
8	Meas	surement procedure	35
8	8.1	General	35
8	8.2	Wind turbine operation	35
3	3.3	Data collection	36
8	3.4	Data rejection	36
3	3.5	Database	37
9	Deriv	/ed results	37
ç	9.1	Data normalisation	37
	9.1.1	General	37
	9.1.2	Correction for meteorological mast flow distortion of side-mounted anemometer	38
	9.1.3	Wind shear correction (when REWS measurements available)	38
	9.1.4	Wind veer correction	41

9.1.5	Air density normalisation	41
9.1.6	Turbulence normalisation	42
9.2	Determination of the measured power curve	42
9.3	Annual energy production (AEP)	43
9.4	Power coefficient	45
10 Repo	rting format	45
Annex A (ı at the test	normative) Assessment of influences caused by wind turbines and obstacles site	52
A.1	General	52
A.2	Requirements regarding neighbouring and operating wind turbines	52
A.3	Requirements regarding obstacles	53
A.4	Method for calculation of sectors to exclude	53
A.5	Special requirements for extended obstacles	57
Annex B (ı	normative) Assessment of terrain at the test site	58
Annex C (normative) Site calibration procedure	61
C 1	General	61
C.2	Overview of the procedure	61
C.3	Test set-un	63
C 3 1	Considerations for selection of the test wind turbine and location of the	
0.0.1	meteorological mast	63
C.3.2	InstrumentationSTANDARD PREVIEW	65
C.4	Data acquisition and rejection criteria	65
C.5	Analysis (Stanuar us.nen.ar)	66
C.5.1	Assessment of site shear conditions	66
C.5.2	Method 1: Bins of wind direction and wind sheat had been the sheat had been been been been been been been bee	68
C.5.3	Method 2: Linear regression method (where shear is not a significant influence	69
C.5.4	Additional calculations	69
C.6	Site calibration uncertainty	70
C.6.1	Site calibration category A uncertainty	70
C.6.2	Site calibration category B uncertainty	72
C.6.3	Combined uncertainty	72
C.7	Quality checks and additional uncertainties	72
C.7.1	Convergence check	72
C.7.2	Correlation check for linear regression (see C.5.3)	73
C.7.3	Change in correction between adjacent wind direction bins	73
C.7.4	Removal of the wind direction sensor between site calibration and power performance test	73
C.7.5	Site calibration and power performance measurements in different seasons	74
C.8	Verification of results	75
C.9	Site calibration examples	76
C.9.1	Example A	76
C.9.2	Example B	81
C.9.3	Example C	88
Annex D (I	normative) Evaluation of uncertainty in measurement	91
Annex E (i measurem	informative)Theoretical basis for determining the uncertainty of ient using the method of bins	94
E.1	General	94

E.2	Combining uncertainties	94
E.2.1	General	94
E.2.2	Expanded uncertainty	96
E.2.3	Basis for the uncertainty assessment	97
E.3	Category A uncertainties	100
E.3.1	General	100
E.3.2	Category A uncertainty in electric power	100
E.3.3	Category A uncertainties in the site calibration	101
E.4	Category B uncertainties: Introduction and data acquisition system	101
E.4.1	Category B uncertainties: Introduction	
F 4 2	Category B uncertainties: data acquisition system	102
E 5	Category B uncertainties: Power output	102
E 5 1	General	102
E 5 2	Category B uncertainties: Power output – Current transformers	102
E 5 3	Category B uncertainties: Power output Voltage transformers	102
E.5.5	Category B uncertainties: Power Output – Voltage transformers	105
E.J.4	power measurement device	
E 5 5	Category B uncertainties: Power output – Data acquisition	104
E 6	Category B uncertainties: Wind speed – Introduction and sensors	104
E.0	Category B uncertainties: Wind speed – Introduction	104
E 6 2	Category B-uncertainties: Wind speed - Introduction	104
E.0.2	Category Buncertainties: Wind apoed - Mateorological mast mounted	104
E.0.3	sensors	105
F 7	Category B uncertainties: Wind speed – RSD	108
E 7 1	General IEC 61400-12-1:2017	108
E 7 2	Catethory/spontacettaninges/yindards/sec/b6h23b0-b6haubhatibaaa-	108
E 7 3	Category B uncertainties: Wind speed – RSD – in-situ check	108
E.7.0	Category B uncertainties: Wind speed – RSD – Classification	108
	Category B uncertainties: Wind speed RSD Mounting	1100
E 7 6	Category B uncertainties: Wind speed – ROD – Modning	110
	Category B uncertainties: Wind speed – NSD – How Variation	111
	Category B uncertainties: Wind speed – KSD – Monitoring test	110
	Category B uncertainties. Wind speed – REWS	۲۱۱ ۱۹۵
E.O.I	General	Z
E.8.2	Category B uncertainties: wind speed – REWS – wind speed	112
E 8 3	Category B uncertainties: Wind speed – REWS – Wind veer	
E 0	Category B uncertainties: Wind speed – Terrain	113
	General	113
E 0 2	Category Buncertainties: Wind speed Terrain Pre-calibration	111
E.9.2	Category B uncertainties: Wind speed – Terrain – Pre-calibration	+۱۱ ۱۰۰. ۱۱۸
E.9.3	Category B uncertainties. Wind speed – Terrain – Post-cambration	114
E.9.4	Category B uncertainties: Wind speed – Terrain – Classification	115
E.9.5	Category B uncertainties: Wind speed – Terrain – Mounting	110
E.9.6	Category B uncertainties: wind speed – Terrain – Lightning finial	116
E.9.7	Category B uncertainties: Wind speed – Terrain – Data acquisition	117
E.9.8	Category B uncertainties: Wind speed – Terrain – Change in correction	117
ГОО		117
E.9.9	category b uncertainties: wind speed – Terrain – Removal of WD	117
F G 1	0 Category B uncertainties: Wind speed – Terrain – Seasonal variation	
E 10	Category B uncertainties: Air density	
	eareger, 2 anoritantion, in denoty	

E.10.1	General	118
E.10.2	Category B uncertainties: Air density – Temperature introduction	118
E.10.3	Category B uncertainties: Air density – Temperature – Calibration	119
E.10.4	Category B uncertainties: Air density – Temperature – Radiation shielding	119
E.10.5	Category B uncertainties: Air density – Temperature – Mounting	119
E.10.6	Category B uncertainties: Air density – Temperature – Data acquisition	119
E.10.7	Category B uncertainties: Air density – Pressure introduction	120
E.10.8	Category B uncertainties: Air density – Pressure – Calibration	120
E.10.9	Category B uncertainties: Air density – Pressure – Mounting	120
E.10.10	Category B uncertainties: Air density – Pressure – Data acquisition	121
E.10.11	Category B uncertainties: Air density – Relative humidity introduction	121
E.10.12	Category B uncertainties: Air density – Relative humidity – Calibration	122
E.10.13	Category B uncertainties: Air density – Relative humidity – Mounting	122
E.10.14	Category B uncertainties: Air Density – Relative humidity – Data acquisition	122
E.10.15	Category B uncertainties: Air density – Correction	122
E.11 Cat	egory B uncertainties: Method	123
E.11.1	General	123
E.11.2	Category B uncertainties: Method – Wind conditions	123
E.11.3	Category B uncertainties: Method - Seasonal effects	128
E.11.4	Category B uncertainties: Method – Turbulence normalisation (or the lack thereof)	129
E.11.5	Category B uncertainties: Method – Cold climate	129
E.12 Cat	egory B uncertainties: Wind direction 2017	130
E.12.1	Genleral/standards.iteh.ai/catalog/standards/sist/b6b43db0-b0ba-41a0-baaa-	130
E.12.2	Category B uncertainties. While direction 1- Wane or sonic	130
E.12.3	Category B uncertainties: Wind direction – RSD	132
E.13 Cor	nbining uncertainties	133
E.13.1	General	133
E.13.2	Combining Category B uncertainties in electric power (u_{P_i})	133
E.13.3	Combining uncertainties in the wind speed measurement $(u_{V,i})$	133
E.13.4	Combining uncertainties in the wind speed measurement from cup or sonic (u_{VS})	133
E.13.5	Combining uncertainties in the wind speed measurement from RSD (μ_{VP})	134
E.13.6	Combining uncertainties in the wind speed measurement from REWS	134
E.13.7	Combining uncertainties in the wind speed measurement for REWS for either a meteorological mast significantly above hub height or an RSD with a lower-than-hub-height meteorological mast	135
E.13.8	Combining uncertainties in the wind speed measurement for REWS for a hub height meteorological mast + RSD for shear using an absolute wind speed	138
E.13.9	Combining uncertainties in the wind speed measurement for REWS for a hub height meteorological mast and RSD for shear using a relative wind speed	140
E.13.10	Combining uncertainties in the wind speed measurement from REWS due to wind veer across the whole rotor <i>u</i> REWS veer <i>i</i>	141
E.13.11	Combining uncertainties in the wind speed measurement from flow distortion due to site calibration $u_{V/T}$;	144
E.13.12	Combining uncertainties for the temperature measurement u_{T} <i>i</i>	145

E.13.13 Combining uncertainties for the pressure measurement <i>u</i> B, <i>i</i>	146
E.13.14 Combining uncertainties for the humidity measurement <i>u</i> _{RH,<i>i</i>}	146
E.13.15 Combining uncertainties for the method related components $u_{M,i}$	147
E.13.16 Combining uncertainties for the wind direction measurement with wind vane or sonic anemometer u_{WV} <i>j</i>	147
E.13.17 Combining uncertainties for the wind direction measurement with RSD	147
E.13.18 Combined category B uncertainties	
E.13.19 Combined standard uncertainty – Power curve	148
E.13.20 Combined standard uncertainty – Energy production	148
E.14 Relevance of uncertainty components under specified conditions	148
E.15 Reference tables	149
Annex F (normative) Wind tunnel calibration procedure for anemometers	153
F.1 General requirements	153
F.2 Requirements to the wind tunnel	153
F.3 Instrumentation and calibration set-up requirements	155
F.4 Calibration procedure	155
F.4.1 General procedure cup and sonic anemometers	155
F.4.2 Procedure for the calibration of sonic anemometers	156
F.4.3 Determination of the wind speed at the anemometer position	156
F.5 Data analysis Commentation A.R.D. D.R. F.V. H. F. S.	157
F.6 Uncertainty analysis	157
F.7 Reporting format(Stanuarus.nen.al)	158
F.8 Example uncertainty calculation	159
Annex G (normative) Mounting of instruments of the meteorological mast	162
G.1 General2u027c60cc9b/iec-61400-12-1-2017	162
G.2 Single top-mounted anemometer	162
G.3 Side-by-side top-mounted anemometers	164
G.4 Side-mounted instruments	166
G.4.1 General	166
G.4.2 Tubular meteorological masts	167
G.4.3 Lattice meteorological masts	169
G.5 Lightning protection	174
G.6 Mounting of other meteorological instruments	174
Annex H (normative) Power performance testing of small wind turbines	1/5
H.1 General	175
H.2 Definitions	175
H.3 Wind turbine system definition and installation	175
H.4 Meteorological mast location	176
H.5 Test equipment	1//
H.6 Measurement procedure	1//
H.7 Derived results	178
H.8 Reporting	179
the test site	179
H.10 Annex B – Assessment of terrain at test site	179
H.11 Annex C – Site calibration procedure	179
Annex I (normative) Classification of cup and sonic anemometry	180
I.1 General	180

I.2	Classification classes	180
1.3	Influence parameter ranges	181
1.4	Classification of cup and sonic anemometers	181
l.5	Reporting format	183
Annex J (normative) Assessment of cup and sonic anemometry	184
J.1	General	184
J.2	Measurements of anemometer characteristics	184
J.2.1	Measurements in a wind tunnel for tilt angular response characteristics of cup anemometers	184
J.2.2	Wind tunnel measurements of directional characteristics of cup anemometers	185
J.2.3	Wind tunnel measurements of cup anemometer rotor torque characteristics	186
J.2.4	Wind tunnel measurements of step responses of cup anemometers	186
J.2.5	Measurement of temperature induced effects on anemometer performance	187
J.2.6	Wind tunnel measurements of directional characteristics of sonic anemometers	189
J.3	A cup anemometer classification method based on wind tunnel and	
	laboratory tests and cup anemometer modelling	189
J.3.1	Method	189
J.3.2	Example of a cup anemometer model	189
J.4	A sonic anemometer classification method based on wind tunnel tests and sonic anemometer modeling Carcissites.at	196
J.5	Free field comparison measurements	197
Annex K	(normative) In-situ comparison of anemometers	198
K.1	General	198
K.2	Prerequisite	198
K.3	Analysis method	198
K.4	Evaluation criteria	199
Annex L (normative) The application of remote sensing technology	202
L.1	General	202
L.2	Classification of remote sensing devices	203
L.2.1	General	203
L.2.2	Data acquisition	203
L.2.3	Data preparation	204
L.2.4	Principle and requirements of a sensitivity test	205
L.2.5	Assessment of environmental variable significance	211
L.2.6	Assessment of interdependency between environmental variables	212
L.2.7	Calculation of accuracy class	214
L.2.8	Acceptance criteria	216
L.2.9	Classification of RSD	217
L.3	Verification of the performance of remote sensing devices	217
L.4	Evaluation of uncertainty of measurements of remote sensing devices	220
L.4.1	General	220
L.4.2	Reference uncertainty	220
L.4.3	Uncertainty resulting from the RSD calibration test	220
L.4.4	Uncertainty due to remote sensing device classification	222
L.4.5	Uncertainty due to non-homogenous flow within the measurement volume	223

1 4 6	Uncortainty due to mounting offects	222
L.4.0	Incertainty due to variation in flow across the site	223
15	Additional checks	223
151	Monitoring the performance of the remote sensing device at the	८८न
L.J. I	application site	224
L.5.2	Identification of malfunctioning of the remote sensing device	224
L.5.3	Consistency check of the assessment of the remote sensing device	
	systematic uncertainties	224
L.5.4	In-situ test of the remote sensing device	225
L.6	Other requirements specific to power curve testing	225
L.7	Reporting	227
L.7.1	Common reporting on classification test, calibration test, and monitoring	
	of the remote sensing device during application	227
L.7.2	Additional reporting on classification test	227
L.7.3	Additional reporting on calibration test	228
L.7.4	Additional reporting on application	228
Annex M	(informative) Normalisation of power curve data according to the turbulence	
intensity.		229
M.1	General	229
M.2	Turbulence normalisation procedure	229
M.3	Determination of the zero turbulence power curve	231
M.4	Order of wind shear correction (normalisation) and turbulence normalisation	236
M.5	Uncertainty of turbulence normalisation or of power curves due to turbulence	
	effects	236
Annex N	(informative) Wind tunnel calibration procedure for wind direction sensors	238
N.1	General.https://standards.iteh.ai/catalog/standards/sist/b6b43db0-b0ba-41a0-baaa	238
N.2	General requirements 2a027c60cc9b/iec-61400-12-1-2017	238
N.3	Requirements of the wind tunnel	238
N.4	Instrumentation and calibration set-up requirements	239
N.5	Calibration procedure	240
N.6	Data analysis	241
N.7	Uncertainty analysis	241
N.8	Reporting format	241
N 9	Example of uncertainty calculation	243
N 9	General	243
N 9 2	2 Measurement uncertainties generated by determination of the flow	
11.0.2	direction in the wind tunnel	243
N.9.3	3 Contribution to measurement uncertainty by the wind direction sensor	244
N.9.4	Result of the uncertainty calculation	245
Annex O	(informative) Power performance testing in cold climate	248
0 1	General	248
0.2	Recommendations	248
0.2	1 General	248
0.2.	2 Sonic anemometers	2/12
0.2.	Cun anemometers	240 212
0.2.	Uncertainties	0+2 2/0
0.3	Penorting	249
U.4 Anney D	(informativa) Wind shoar normalisation presedure	249
		200
P.1	General	250

Annex Q (informative) Definition of the rotor equivalent wind speed under	252
	252
Q.1 General.	252
Q.2 Deminition of fotor equivalent wind speed under consideration of wind veer	200
Q.5 Measurement of wind veel	253
Anney R (informative) Uncertainty considerations for tests on multiple turbines	253
P.1 Conorol	254
Annex S (informative) Mast flow distortion correction for lattice masts	254
Bibliography	261
5 F J	
Figure 1 – Requirements as to distance of the wind measurement equipment and maximum allowed measurement sectors	28
Figure 2 – Wind shear measurement heights appropriate to measurement of rotor	
equivalent wind speed	33
Figure 3 – Wind shear measurement heights when no wind speed measurements	
above hub height are available (for wind shear exponent determination only)	34
Figure 4 – Process of application of the various normalisations	38
Figure 5 – Presentation of example database: power performance test scatter plot	
sampled at 1 Hz (mean values averaged over 10 min)	48
Figure 6 – Presentation of example measured power curve	49
Figure 7 – Presentation of example <i>Qprourver.cls.it.eh.ai</i>	49
Figure A.1 – Sectors to exclude due to wakes of neighbouring and operating wind turbines and significant obstacles <u>IEC 61400-12-12017</u>	55
Figure A.2 – An example of sectors to exclude due to wakes of the wind turbine under test, a neighbouring and operating wind turbine and a significant obstacle	56
Figure B.1 – Illustration of area to be assessed, top view	58
Figure B.2 – Example of determination of slope and terrain variation from the best-fit plane: " $2L$ to $4L$ " and the case "measurement sector" (Table B.1, line 2)	59
Figure B.3 – Determination of slope for the distance " $2L$ to $4L$ " and " $8L$ to $16L$ " and the case "outside measurement sector" (Table B.1, line 3 and line 5)	60
Figure C.1 – Site calibration flow chart	62
Figure C. 2 – Terrain types	64
Figure C.3 – Example of the results of a verification test	76
Figure $C.4$ – Wind shear exponent vs. time of day, example A	70
Figure C.5 Wind shear exponent vs. time of day, example A	
meteorological mast, example A where the colour axis = wind speed (m/s)	78
Figure C.6 – Wind speed ratios and number of data points vs. wind shear exponent and wind direction bin – wind speed ratios (full lines), number of data points (dotted lines)	
Figure C 7 – Data convergence check for 190° bin	
Figure C.8 – Wind shear exponent vs. time of day, example B	
Figure C.9 – Wind shear exponents at wind turbine location vs. reference	02
meteorological mast, example B	82
Figure C.10 – Linear regression of wind turbine location vs. reference meteorological mast hub height wind speeds for 330° bin	83
Figure C.11 – Wind speed ratios vs. wind speed for the 330° bin	83
Figure C.12 – Wind speed ratios vs. wind shear for the 330° bin	84

Figure C.13 – Wind shear exponents at wind turbine location vs. reference meteorological mast post-filtering	85
Figure C.14 – Linear regression of wind turbine location vs. reference meteorological mast hub height wind speeds for 330° bin, post-filtering	85
Figure C.15 – Wind speed ratios vs. wind speed for the 330° bin, post-filtering	86
Figure C.16 – Data convergence check for 330° bin	87
Figure C.17 – Site calibration wind shear vs. power curve test wind shear	88
Figure C.18 – Convergence check for 270° bin	90
Figure F.1 – Definition of volume for flow uniformity test – The volume will also extend 1,5 x b in depth (along the flow)	154
Figure G.1 – Example of a top-mounted anemometer and requirements for mounting	164
Figure G.2 – Example of alternative top-mounted primary and control anemometers positioned side-by-side and wind vane and other instruments on the boom	166
Figure G.3 – Iso-speed plot of local flow speed around a cylindrical meteorological mast	168
Figure G.4 – Centreline relative wind speed as a function of distance R_d from the centre of a tubular meteorological mast and meteorological mast diameter d	169
Figure G.5 – Representation of a three-legged lattice meteorological mast	169
Figure G.6 – Iso-speed plot of local flow speed around a triangular lattice meteorological mast with a C_{T} of 0.5	170
Figure G.7 – Centreline relative wind speed as a function of distance R_d from the centre of a triangular lattice meteorological mast of leg distance L_m for various C_T values	171
Figure G.8 – 3D CFD derived flow distortion for two different wind directions around a triangular lattice meteorological mast $(C_T = 0.27) = For flow direction see the red arrow lower left in each fidure.$	173
2a027c60cc9b/icc-61400-12-1-2017 Figure H.1 – Definition of hub height and meteorological mast location for vertical axis wind turbines	177
Figure J.1 – Tilt angular response $V_{\alpha}/V_{\alpha=0}$ of a cup anemometer as function of flow angle α compared to cosine response	185
Figure J.2 – Wind tunnel torque measurements $Q_A - Q_F$ as function of angular speed ω of a cup anemometer rotor at 8 m/s	186
Figure J.3 – Example of bearing friction torque Q_F as function of temperature for a range of angular speeds ω	188
Figure J.4 – Example of rotor torque coefficient C_{QA} as function of speed ratio λ derived from step responses with K_{IOW} equal to –5,5 and K_{high} equal to –6,5	191
Figure J.5 – Classification deviations of example cup anemometer showing a class 1,69A (upper) and a class 6,56B (lower)	195
Figure J.6 – Classification deviations of example cup anemometer showing a class 8,01C (upper) and a class 9,94D (lower)	196
Figure K.1 – Example with triangular lattice meteorological mast	200
Figure K.2 – Example with tubular meteorological mast	201
Figure L.1 – Deviation vs upflow angle determined for a remote sensing device with respect to the cup anemometer in Figure J.1	207
Figure L.2 – Example of sensitivity analysis against wind shear	209
Figure L.3 – Example of wind shear versus turbulence intensity	213
Figure L.4 – Example of percentage deviation of remote sensing device and reference sensor measurements versus turbulence intensity	213

Figure L.5 – Comparison of 10 minute averages of the horizontal wind speed component as measured by a remote sensing device and a cup anemometer	219
Figure L.6 – Bin-wise comparison of measurement of the horizontal wind speed component of a remote sensing device and a cup anemometer	219
Figure L.7 – Example of permitted range of locations for measurement volume	226
Figure M.1 – Process for obtaining a power curve for a specific turbulence intensity (L_{1}, f_{2}, \dots)	230
Figure M.2 – Process for obtaining the initial zero turbulence power curve parameters from the measured data	232
Figure M.3 – First approach for initial zero turbulence power curve	232
Figure M.4 – Process for obtaining the theoretical zero-turbulence power curve from the measured data	234
Figure M.5 – Adjusted initial zero turbulence power curve (green) compared to first approach (red)	235
Figure M.6 – Process for obtaining the final zero-turbulence power curve from the measured data	235
Figure M.7 – Adjusted initial zero turbulence power curve (green) compared to final zero turbulence power curve (black)	236
Figure N.1 – Example of calibration setup of a wind direction sensor in a wind tunnel	240
Figure Q.1 – Wind profiles measured with LIDAR over flat terrain	252
Figure S.1 – Example of mast flow distortion A.R.D. P.R.E.V.E.W.	258
Figure S.2 – Flow distortion residuals versus direction	260
measurements that meet the requirements of this standard bo boba-41a0-baaa	26
Table 2 – Wind speed measurement configurations (X indicates allowable configuration)	30
Table 3 – Example of REWS calculation	40
Table 4 – Example of presentation of a measured power curve	50
Table 5 – Example of presentation of estimated annual energy production	51
Table A.1 – Obstacle requirements: relevance of obstacles	53
Table B.1 – Test site requirements: topographical variations	59
Table C.1 – Site calibration flow corrections (wind speed ratio)	80
Table C.2 – Site calibration data count	80
Table C.3 – r^2 values for each wind direction bin	87
Table C.4 – Additional uncertainty due to change in bins	87
Table C.5 – Additional uncertainty due to change in bins	90
Table D.1 List of uncertainty components	91
Table D.1 – List of uncertainty components	
Table D.1 – List of uncertainty components Table E.1 – Expanded uncertainties	96
Table D.1 – List of uncertainty components Table E.1 – Expanded uncertainties Table E.2 – List of category A and B uncertainties	96 98
Table D.1 – List of uncertainty components Table E.1 – Expanded uncertainties Table E.2 – List of category A and B uncertainties Table E.3 – Example of standard uncertainties due to absence of a wind shear measurement	96 98 125
Table D.1 – List of uncertainty components Table E.1 – Expanded uncertainties Table E.2 – List of category A and B uncertainties Table E.3 – Example of standard uncertainties due to absence of a wind shear measurement Table E.4 – Example of standard uncertainties due to absence of a wind veer measurement	96 98 125 127
Table D.1 – List of uncertainty components Table E.1 – Expanded uncertainties Table E.2 – List of category A and B uncertainties Table E.3 – Example of standard uncertainties due to absence of a wind shear measurement Table E.4 – Example of standard uncertainties due to absence of a wind veer measurement Table E.5 – Uncertainty contributions due to lack of upflow knowledge	96 98 125 127 128

Table E.7 – Suggested assumptions for correlations of measurement uncertaintiesbetween different measurement heights	137
Table E.8 – Suggested correlation assumptions for relative wind direction measurement uncertainties at different measurement heights	143
Table E.9 – Uncertainties from air density normalisation	149
Table E.10 – Sensitivity factors	151
Table E.11 – Category B uncertainties	152
Table F.1 – Example of evaluation of anemometer calibration uncertainty	159
Table G.1 – Estimation method for C_{T} for various types of lattice mast	171
Table H.1 – Battery bank voltage settings	178
Table I.1 – Influence parameter ranges (10 min averages) of Classes A, B, C, D and S	182
Table J.1 – Tilt angle response of example cup anemometer	193
Table J.2 – Friction coefficients of example cup anemometer	194
Table J.3 – Miscellaneous data related to classification of example cup anemometer	194
Table L.1 – Bin width example for a list of environmental variables	208
Table L.2 – Parameters derived from a sensitivity analysis of a remote sensing device	210
Table L.3 – Ranges of environmental parameters for sensitivity analysis	211
Table L.4 – Example selection of environmental variables found to have a significant	
influence	212
Table L.5 – Sensitivity analysis parameters remaining after analysis of interdependency of variables (stondards itch ai)	214
Table L 6 – Example scheme for calculating maximum influence of environmental	
variables	215
Table L.7 – Preliminary/accuracy/classes/of/acremote/sensing/device/considering both all and only the most significant influential/variables/-12-1-2017	216
Table L.8 – Example final accuracy classes of a remote sensing device	216
Table L.9 – Example of uncertainty calculations arising from calibration of a remote sensing device (RSD) in terms of systematic uncertainties	221
Table N.1 – Uncertainty contributions in wind directions sensor calibration	246
Table N.2 – Uncertainty contributions and total standard uncertainty in wind direction	-
sensor calibration	247
Table R.1 – List of correlated uncertainty components	255

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND ENERGY GENERATION SYSTEMS –

Part 12-1: Power performance measurements of electricity producing wind turbines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. (Standards.iten.al)
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. https://standards.iteh.ai/catalog/standards/sist/b6b43db0-b0ba-41a0-baaa-
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-12-1 has been prepared by IEC technical committee 88: Wind energy generation systems.

This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:

- a) new definition of wind speed,
- b) inclusion of wind shear and wind veer,
- c) revision of air density correction,
- d) revision of site calibration,
- e) revision to definition of power curve,
- f) interpolation to bin centre method,
- g) revision of obstacle model,