IEC 62127-1 (First edition - 2007)

Ultrasonics – Hydrophones – Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz

CORRIGENDUM 1

Page 9

3 Terms, definitions and symbols

3.37 near field

On page 17, instead of:

NOTE For circular planar transducers, this is at a distance less than $A_1/\pi\lambda$, where A_1 is the output beam area group and λ is the wavelength of the ultrasound corresponding to the acoustic frequency.

read:

NOTE For circular planar transducers, this is at a distance less than $A_{ob} / \pi \lambda$, where A_{ob} is the output beam area and λ is the wavelength of the ultrasound corresponding to the acoustic frequency.

3.38

non-linear propagation parameter

Instead of:

 σ_{m} $p_{\rm m}$ oc³ read: $\sigma_{\rm m} = \frac{\omega\beta I_1}{\rho c^3} \rho_{\rm m} \frac{\ln((F_{\rm g} - 1)^{1/2} + F_{\rm g}^{1/2})}{(F_{\rm g} - 1)^{1/2}}$

ωß

3.44 peak-rarefactional acoustic pressure

On page 19, instead of:

p (or p_r)

read:

 p_{\bullet} (or p_{r})

3.76 ultrasonic transducer element group dimensions

On page 24, delete Notes 2 and 3.

Page 24

4 List of symbols

Instead of:

F_{g}	0,69* A _g /(–6 dB beam area)
V(f)	instantaneous particle velocity
σm	non-linear propagation parameter
read:	
Fg	$0,69 \cdot A_{g}/(-6 \text{ dB beam area})$
V	instantaneous particle velocity
$\sigma_{\rm m}$	non-linear propagation parameter
Page	28 iTet sinda as
5.1.7	Bandwith
5.1.7	1 Narrow-band approximation
Instea	ad of:
where	$M_{L,dB}(f) = 20\log \frac{M_{L}(f)}{M_{0}} + 1007/COR1:2008$
read:	
where	$M_{L,dB}(f) = 20 \log_{10} \frac{M_{L}(f)}{M_{0}} dB$
5.1.8	Linearity
Instea	ad of:
"The	upper limit of known linear dynamic range shall be stated"

read:

"The upper limit of known dynamic range shall be stated..."

Page 30

5.2.2 Positioning systems

5.2.2.2 Hydrophone positioning

Instead of:

" ... so that the normal to the direction of maximum sensitivity..."

read:

"...such that the direction of maximum sensitivity ... "

Page 32

5.4 Recommendations for ultrasonic equipment being characterized

Number the notes as Note 1 and Note 2.

Page 35

7.2 Primary pressure parameters

7.2.3 Spatial-peak rms acoustic pressure

Instead of:

NOTE 1 Particular regions of interest are those areas where on the beam axis maxima or minima of any of these pressures occur.

read:

NOTE 1 Particular regions of interest are those areas where on the beam axis maxima or minima of this pressure occur.

7.2.6 Intensity parameters using pulse-pressure-squared integral

7.2.6.1 Pulse duration

On page 38, instead of:

$$\frac{1}{M^2} \int_{t_1=0}^{t_a} V^{-2}(t) dt = 0,1 \text{ ppsi} \text{ and}$$
(12)

$$\frac{1}{M^2} \int_{t_1=0}^{t_b} V^{-2}(t) dt = 0.9 \text{ ppsi}$$
(13)

read:

$$\frac{1}{M^2} \int_{t_1=0}^{t_a} U^2(t) dt = 0,1 \text{ ppsi} \text{ and}$$
(12)

$$\frac{1}{M^2} \int_{t_1=0}^{t_b} U^2(t) dt = 0.9 \text{ ppsi}$$
(13)