

SLOVENSKI STANDARD SIST EN 3335:2005

01-november-2005

Aerospace series - Aluminium alloy AL-P7475-O2 - Sheet for superplastic forming (SPF) - 0,8 mm <a <6 mm

Aerospace series - Aluminium alloy AL-P7475-O2 - Sheet for superplastic forming (SPF) - 0,8 mm <a <6 mm

Luft- und Raumfahrt - Aluminiumlegierung AL-P7475-O2 - Bleche für superplastische Formgebung (SPF) - 0,8 mm <a < 6 mmards.iteh.ai)

Série aérospatiale - Alliage d'aluminium AL-P7475-O2 - Tôles pour formage superplastique (FSP) - 0,8 mm $\leq a \leq 6$ mm/9/sist-en-3335-2005

Ta slovenski standard je istoveten z: EN 3335:2005

ICS:

49.025.20 Aluminij Aluminium

SIST EN 3335:2005 en

SIST EN 3335:2005

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 3335:2005

https://standards.iteh.ai/catalog/standards/sist/54abf7e2-2ae4-4022-972f-549226e5c4b9/sist-en-3335-2005

EUROPEAN STANDARD NORME EUROPÉENNE

EUROPÄISCHE NORM

EN 3335

June 2005

ICS 49.025.20

English version

Aerospace series - Aluminium alloy AL-P7475-O2 - Sheet for superplastic forming (SPF) - 0,8 mm ≤a ≤6 mm

Série aérospatiale - Alliage d'aluminium AL-P7475-O2 - Tôles pour formage superplastique (FSP) - 0,8 mm \le a \le 6 mm

Luft- und Raumfahrt - Aluminiumlegierung AL-P7475-O2 - Bleche für superplastische Formgebung (SPF) - 0,8 mm \leq a \leq 6 mm

This European Standard was approved by CEN on 22 April 2005.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

https://standards.iteh.ai/catalog/standards/sist/54abf7e2-2ae4-4022-972f-549226e5c4b9/sist-en-3335-2005

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Foreword

This document (EN 3335:2005) has been prepared by the European Association of Aerospace Manufacturers - Standardization (AECMA-STAN).

After enquiries and votes carried out in accordance with the rules of this Association, this Standard has received the approval of the National Associations and the Official Services of the member countries of AECMA, prior to its presentation to CEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2005, and conflicting national standards shall be withdrawn at the latest by December 2005.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

(standards.iteh.ai)

<u>SIST EN 3335:2005</u> https://standards.iteh.ai/catalog/standards/sist/54abf7e2-2ae4-4022-972f-549226e5c4b9/sist-en-3335-2005

Introduction

This standard is part of the series of EN metallic material standards for aerospace applications. The general organization of this series is described in EN 4258.

This standard has been prepared in accordance with EN 4500-2.

1 Scope

This standard specifies the requirements relating to:

Aluminium alloy AL-P7475-O2 Sheet for superplastic forming (SPF) $0.8 \text{ mm} \le a \le 6 \text{ mm}$

for aerospace application.

2 Normative references ANDARD PREVIEW

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. N 3335:2005

https://standards.iteh.ai/catalog/standards/sist/54abf7e2-2ae4-4022-972f-

EN 4258, Aerospace series — Metallic materials General organization of standardization — Links between types of EN standards and their use.

EN 4400-2, Aerospace series — Aluminium and aluminium alloy wrought products — Technical specification — Part 2: Sheet and strip. 1)

EN 4500-2, Aerospace series — Metallic materials — Rules for drafting and presentation of material standards — Part 2: Specific rules for aluminium, aluminium alloys and magnesium alloys. 1)

¹⁾ Published as AECMA Prestandard at the date of publication of this standard.

1	Material designation			Aluminium alloy AL-P7475-										
2	Chemical Element			Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Others		Al
	composition	osition	Si	re	Cu	IVIII	ivig	GI	۷11	Each		Total	Δ'	
	%	min.		-	1	1,2	1	1,9	0,18	5,2	1	-	-	Base
		max.		0,10	0,12	1,9	0,06	2,6	0,25	6,2	0,06	0,05	0,15	Dase
3	Method of melting			-										
4.1	Form			Sheet										
4.2	Method of production			Rolled and thermomechanically processed to enhance superplastic forming capability										
4.3	Limit dimension(s) mm			0,8 ≤ <i>a</i> ≤ 6										
5	Technical specification			EN 4400-2										

6.1	Delivery condition	O2 ^a
	Heat treatment	Thermomechanically processed to enhance superplastic forming capability
6.2	Delivery condition code	F
7	Use condition	O2 ^b
	Heat treatment	Delivery condition

iTeh STANDARD PREVIEW (standards.iteh.ai)

8.1	' ' '				See EN	4400-2.			
8.2	? Test piece(s)				SIST EN 3335:2005 See EN 4400-2. s://standards.iteh.ai/catalog/standards/sist/54abf/e2-2ae4-4022-972f-				
8.3	Не	eat treatment			549226e5c4b9/sist-en-\;\frac{17625}{549226e5c4b9}\sist-en-\frac{17625}{549226e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sist-en-\frac{17625}{549256e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-\frac{17625}{54926e5c4b9}\sint-en-17625				
9		mensions concerne		mm	0,8 ≤ <i>a</i> ≤ 6				
10	Th ea	nickness of cladding sch face	on	%	-				
11	Di	rection of test piece	:		L	LT			
12		Temperature	θ	°C	Ambient	Ambient			
13		Proof stress	R _{p0,2}	MPa	≥ 410 °	≥ 410 °			
14	Т	Strength	R _m	MPa	≥ 490 °	≥ 490 °			
15		Elongation	Α	%	$A_{50 \text{ mm}} \ge 9^{\text{ c}}$	$A_{50\;mm} \geq 9^{\;c}$			
16	16 Reduction of area Z % -								
17	17 Hardness				=				
18	8 Shear strength R _c MPa			MPa	-				
19	19 Bending k -		1	-					
20	20 Impact strength				-				
21		Temperature	θ	°C					
22	Time h		h	-					
23	С	Stress	σ_{a}	MPa					
24		Elongation	а	%					
25		Rupture stress	σ_{R}	MPa					
26		Elongation at rupture	Α	%	_				
27	27 Notes (see line 98)				a, b,	С			

						1 3333.2003 (L)			
29	Reference heat treatment			Delivery c + $460 ^{\circ}\text{C} \le \theta \le 485$ + $115 ^{\circ}\text{C} \le \theta \le 129$ + $158 ^{\circ}\text{C} \le \theta \le 168$	°C / WQ <i>θ</i> ≤ 40 °C 5 °C / 3 h ≤ t ≤ 6 h				
30	Microstructure		See EN 4400-2.						
		2	One sample per batch that the "capability clau	unless agreement is rea se" may apply.	ched between the manu	ufacturer and purchaser			
		4		ken from a region of the eed between manufactur		t line 63 representing a			
		6	The sample shall be ex	amined in the un-etched	condition.				
		7	Intergranular cavitation	acceptance levels shall be	e agreed between manut	acturer and purchaser			
32	Electrical conductivity	_		See EN	4400-2.				
		5		T762 (se	e line 29)				
		7	γ≥ 22,5	5 MS/m	Acce	ptable			
			22,0 MS/m ≤ γ	v < 22,5 MS/m	Acceptable if I	R _{p0,2} ≤ 470 MPa			
			γ < 22,0) MS/m	Not acc	ceptable			
34	Grain size	_		See EN	4400-2.				
		2	One sample per batch that the "capability clau	unless agreement is rea se" may apply.	ched between the manu	ufacturer and purchaser			
		7		G	> 9				
44	External defects	- (See EN	4400-2.				
63	Superplastic forming capability	n_N	TANDARD PR See EN 4400-2						
		2	(standards	Two samples per	direction per batch				
	https://stand		Superplastic forming capability shall be assessed by an elevated temperature tensile test.						
			SIST EN 33.	ndition: O2					
			-5 Testing temperature: $510 {}^{\circ}_{3}$ C ≤ $9 {}^{\circ}_{4}$ 520 °C - Soaking time: 15 min ≤ t ≤ 45 min - Constant crosshead velocity: v = $\dot{\mathbf{E}} \times L_{\text{start}}$ where: $L_{\text{start}} = L_{\text{o}} + 2$ R and strain rate,						
			$\dot{\mathcal{E}} \ge 6.10^{-4} \text{ s}^{-1}$			1			
		7	Elongation	AL_{\circ}	%	≥ 300			
95	Marking inspection		See EN 4400-2.						
96	Dimensional inspection		See EN 4400-2.						
98	8 Notes		 Cold working or straightening only acceptable when strain ≤ 3 %. The properties of the superplastically formed parts are defined by the drawing. This heat treatment and specified minimum mechanical properties relate to release testing by the manufacturer. The minimum mechanical properties may not necessarily be achieved in superplastically formed components. 						
			in superplastically fo	ormed components.					

100	_	Product qualification	-	See EN 4400-2.
				Qualification programme to be agreed between manufacturer and purchaser.
		Int		eh STANDARD PREVIEW (standards.iteh.ai) SISTEN 33352005 ndards.iteh.ai/catalog/standards/sist/54abf7e2-2ae4-4022-972f- 549226e5c4b9/sist-en-3335-2005