Edition 1.0 2012-05 # TECHNICAL SPECIFICATION Nanomanufacturing ekey control characteristics EVIEW Part 2-1: Carbon nanotube materials – Film resistance (Standards.iten.al) IEC TS 62607-2-1:2012 https://standards.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 ## THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2012 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office Tel.: +41 22 919 02 11 3, rue de Varembé Fax: +41 22 919 03 00 CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published. #### **Useful links:** IEC publications search - www.iec.ch/searchpub The advanced search enables you to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. Electropedia - www.electropedia.org The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on-line. IEC Just Published - webstore.iec.ch/justpublished ndards. Customer Service Centre - webstore.iec.ch/csc Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email. ublished If you wish to give us your feedback on this publication or need further assistance, please contact the IEC TS 62607-2 Customer Service Centre: csc@iec.ch. https://standards.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 ## IEC/TS 62607-2-1 Edition 1.0 2012-05 ## TECHNICAL SPECIFICATION Nanomanufacturing - Key control characteristics EVIEW Part 2-1: Carbon nanotube materials - Film resistance IEC TS 62607-2-1:2012 https://standards.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE P ICS 07.030 ISBN 978-2-83220-114-5 Warning! Make sure that you obtained this publication from an authorized distributor. ### CONTENTS | FO | REW | DRD | 3 | |------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----| | INT | ROD | JCTION | 5 | | 1 | Scop | re | 6 | | 2 | Term | ns, definitions, acronyms and abbreviations | 6 | | | 2.1 | Terms and definitions | 6 | | | 2.2 | Acronyms and abbreviations | 7 | | 3 | Sample preparation methods | | | | | 3.1 | General | 8 | | | 3.2 | Reagents | 8 | | | | 3.2.1 Carbon nanotubes | 8 | | | | 3.2.2 Dispersants | 8 | | | 3.3 | Preparation of SWCNT or MWCNT films | | | | 3.4 | Preparation of SWCNT or MWCNT ribbons | | | 4 | Measurement of sheet resistance of SWCNT or MWCNT films | | | | | 4.1 | 4-point measurement | | | | | 4.1.1 Demarcation of method | 9 | | | | 4.1.2 Experimental procedures and measurement conditions | 9 | | | 4.2 | 4-wire measurement (standards.iteh.ai) | | | | | 4.2.1 Demarcation of method | | | _ | | 4.2.2 Experimental procedures and measurement conditions | 11 | | 5 | Data analysis / Interpretation of results standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 | | | | | 5.1 | Sheet resistance of SWCN1s or MWCN1s using 4-point measurements | 11 | | _ | 5.2 | Sheet resistance of SWCNTs or MWCNTs using 4-wire measurements | | | | | (informative) Case study | | | Bib | liogra | phy | 16 | | Fig | ure 1 | – Preparation of SWCNT and MWCNT films | 9 | | Fig | ure 2 | – 4-point probe | 10 | | Fig | ure 3 | - Photo of typical 4-point measurement apparatus | 10 | | | | – Diagram for 4-wire measurement apparatus | | | | | 1 – FE-SEM images of CNT ribbons | | | _ | | 2 – Photos of fabricated CNT specimens | | | ı ıg | uie A | 2 - Friotos di labilicated CNT specimens | 17 | | Tab | ole A. | 1 – Properties of dispersants used to prepare thin-film samples | 13 | | Tab | le A. | 2 – Resistance and sheet resistance of MWCNTs and SWCNTs ribbons | 15 | | | | 3 – Results of 4-point measurements of CNT films and 4-wire measurements bbons using the same sample preparation | 15 | #### INTERNATIONAL ELECTROTECHNICAL COMMISSION #### NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS – ## Part 2-1: Carbon nanotube materials – Film resistance #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in the international and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5cb80ea07161/iec-ts-62607-2-1-2012 - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when - the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or; - the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards. IEC 62607-2-1, which is a technical specification, has been prepared by IEC technical committee 113: Nanotechnology standardization for electrical and electronic products and systems: The text of this technical specification is based on the following documents: | Enquiry draft | Report on voting | |---------------|------------------| | 113/118/DTS | 113/131/RVC | Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts of the IEC 62607 series, published under the general title Nanomanufacturing – Key control characteristics, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - transformed into an International standard, - reconfirmed, - · withdrawn, - replaced by a revised edition, or - amended. #### iTeh STANDARD PREVIEW A bilingual version of this publication may be issued at a later date. (Standards.iteh.ai) #### IEC TS 62607-2-1:2012 IMPORTANT – The colour inside logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. #### INTRODUCTION There are two major trends in the fabrication of new materials incorporating carbon nanotubes (CNTs) for next generation of industrial applications: - a) conducting composites in field-emission displays (FEDs), flexible displays, or printed electronics; and - b) nano-composites for mechanical applications, by taking advantage of their attractive mechanical properties such as high Young's modulus, elastic behaviour and high tensile strength. This IEC technical specification is related to a), the conducting composites application. As conducting composites using CNTs are increasingly being used in the electronics industry, it is essential to establish a standard method to evaluate their electrical properties. Characterization of the electrical properties of CNTs used in conducting composites is important to both manufacturers and users. This IEC technical specification describes simple methods to characterize the electrical properties of CNT materials that are to be used in conducting composites. ## iTeh STANDARD PREVIEW (standards.iteh.ai) IEC TS 62607-2-1:2012 https://standards.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 #### NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS – ## Part 2-1: Carbon nanotube materials – Film resistance #### 1 Scope This part of IEC 62607 provides a standardized method for categorizing a grade of commercial CNTs in terms of their electrical properties to enable a user to select a CNT material suitable for their application. The method is intended to assess whether the delivered materials from different production batches of the same production process are comparable regarding electrical properties of the final product which are related to electrical conductivity. The correlation between the measured parameters by the proposed method and a relevant product performance parameter has to be established for every application. This specification includes - a) definitions of terminology used in this document, - b) recommendations for sample preparation, - c) outlines of the experimental procedures to measure sheet resistance of CNTs in thin films, - d) methods of interpretation of results and discussion of data analysis, - e) case studies and, (standards.iteh.ai) f) references. IEC TS 62607-2-1:2012 ## 2 Terms, definitions, acronyms and abbreviations, 12 For the purposes of this document, the following terms and definitions apply. NOTE A comprehensive nanotechnology vocabulary is under ongoing development in IEC TC113/ISO TC229 Joint Working Group 1 in cooperation with ISO/TC 229. The vocabulary is/will be published as different parts of IEC/ISO/TS 80004. This document will be harmonized with the terms and definitions of TS 80004 prior to publication and later on during the maintenance of the document. Definitions not yet specified are taken from scientific literature. #### 2.1 Terms and definitions #### 2 1 1 #### single-wall carbon nanotube carbon nanotube consisting of a single cylindrical graphene layer Note 1 to entry: Its structure corresponds to a graphene sheet rolled up into a seamless honeycomb structure around a cylinder. [SOURCE: ISO/TS 80004-3:2010, definition 4.4] #### 2.1.2 ## multiwall carbon nanotube MWCNT carbon nanotube composed of nested, concentric or near-concentric graphene sheets with interlayer distances similar to those of graphite Note 1 to entry: Its structure is considered to be many single-wall carbon nanotubes nesting each other, and would be cylindrical for small diameters but tends to have a polygonal cross section as the diameter increases. [SOURCE: ISO/TS 80004-3:2010, definition 4.6] #### 2.1.3 #### **CNT film** film of SWCNT and/or MWCNT formed by non-destructive methods such as filtration on a substrate, etc. SEE: Figure 1(c). #### 2.1.4 #### sheet resistance #### R۹ measure of resistance of thin films that are nominally uniform in thickness Note 1 to entry: Two-dimensional (x-y) sheet resistance (R_s) can be determined for electrically uniform thin films. In rectangular geometry $R_s = R/(L/w)$, where R is the measured resistance, R = V/I, L is the distance between parallel electrodes, between which the voltage drop (V) is measured, and w is the length of these electrodes. The electrical current (I) must flow along the plane of the sheet, not perpendicular to it (see Figure 4). The ratio L/w represents the number of squares of the film specimen. The unit of sheet resistance is expressed in ohms (Ω). However, for the purpose of this procedure, Ω shall represent the unit ohm/square (Ω /sq). Note 2 to entry: See [1-4¹] #### 2.1.5 #### I-V characteristic relationship between an electric current and a corresponding voltage, or potential difference typically represented as a chart or graph #### 2.1.6 iTeh STANDARD PREVIEW #### 4-probe measurement method to measure the resistance of a material whose measured value is independent on the probe resistance #### IEC TS 62607-2-1:2012 Note 1 to entry: In this method 4 probes contact the test sample in a linear arrangement. A voltage drop is measured between the two inner probes while a current source supplies current through the outer probes. The resistance of the sample can be calculated by Ohm's law. Furthermore, the resistivity of the sample can be obtained by the consideration of the geometric factors of the sample. See references [3,4]. #### 2.1.7 #### 4-wire measurement type of 4-probe measurement defined in 3.1.6 in which a wire is used as a probe #### 2.1.8 #### 4-point measurement type of 4-probe measurement defined in 3.1.6 in which a pointed electric tip is used as a probe Note 1 to entry: A 4-point measurement is generally used to measure sheet resistance of a thin-film sample with relatively large width compared to the spacing between the probes. #### 2.2 Acronyms and abbreviations DMF: N,N-dimethylformamide THF: Tetrahydrofuran DCE: Dichloroethane PVDF: Polyvinylidene fluoride Numbers in square brackets refer to the Bibliography. #### 3 Sample preparation methods #### 3.1 General For 4-probe measurements, a powder-like CNT product should be manipulated into a pellet or film sample [5-6]. A film sample is preferred because with a pellet sample, high pressure may induce deformation and change the intrinsic properties of the CNTs. For the purpose of this standard, it is critical to fabricate a uniform film over a large area, avoiding any external forces that might alter the measurements significantly. Two aspects are important in preparation of uniform CNT films for 4-probe measurements: (i) selecting a proper dispersant; and (ii) determining the amount of CNTs to use for thin-film formation. If it is difficult to prepare uniform CNT films with suitable geometric factors for electrical measurements, the film may be tailored into ribbon form. #### 3.2 Reagents #### 3.2.1 Carbon nanotubes SWCNTs or MWCNTs in the as-received condition shall be used for this test, and with no additional conditioning performed. #### 3.2.2 Dispersants THF is recommended as the standard dispersant by comparing its function with that of other organic dispersants such as DMF, ethanol or 1.2-dichloroethane, which are commonly used for CNT dispersion [7-8]. Among these dispersants, THF makes homogeneously dispersed CNT suspensions, helps to minimize CNT surface damage during the sonication step, and can be removed effectively after film formation. Spectrophotometric grade (> 99,8 %) is recommended to minimize contamination of the CNT. The test results obtained from each dispersant are compared and summarized in Annex A Table A.1. https://standards.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76- #### 3.3 Preparation of SWCNT of MWCNT films-62607-2-1-2012 Disperse 2 mg of SWCNTs or MWCNTs in 20 ml of THF by ultrasonic treatment (bath type, 40 kHz) for 30 min at 25 °C. Filter the resultant suspension under vacuum using a 220 nm pore-PVDF membrane (disc diameter: 25 mm) to form a thin film, and then dry it for 12 h at 80 °C. See Figure 1. The film thickness of the resulting CNT films was 50 \pm 1 μm and the film diameter was 18 mm. See Clauses A.2 and A.3. - (a) Procedure for dispersing CNTs in THF - (b) Filtration apparatus - (c) Resultant CNT film after filtration through PVDF membrane with 25 mm diameter and 220-nm pore size Figure 1 - Preparation of SWCNT and MWCNT films #### 3.4 Preparation of SWCNT or MWCNT ribbons Ribbon-type samples are prepared by tailoring the SWCNT or MWCNT film using an antistatic cutter to a size suitable for 4-wire measurements. The recommended size is 1~2 mm wide II en STANDARD PREVIEN \times ~10 mm long. #### (standards.iteh.ai) #### Measurement of sheet resistance of SWCNT or MWCNT films IEC TS 62607-2-1:2012 4.1 4-point measurement rds.iteh.ai/catalog/standards/sist/4d0b226e-84df-46ca-9c76-5cb80ea07161/iec-ts-62607-2-1-2012 Demarcation of method #### 4.1.1 This method is applicable for measuring sheet resistance of SWCNT or MWCNT films that maintain their uniformity in shape and flatness during sample preparation and measurement. #### 4.1.2 Experimental procedures and measurement conditions A schematic of a 4-point probe configuration and a picture of a probe card are shown in Figure 2. The 4-point setup consists of four equally spaced platinum metal tips with uniform tip radius. Typical probe spacing is 1 mm. The current source (A) supplies current through the outer two probes, and a voltmeter (V) measures the voltage across the inner two probes (Figure 2(a)) to determine the sample resistance. The voltmeter must be of high input impedance. Otherwise, equations (1) and (2) shown in Clause 6 cannot be used.