

SLOVENSKI STANDARD SIST EN ISO 15136-1:2002

01-januar-2002

Downhole equipment for petroleum and natural gas industries - Progressing cavity pump systems for artificial lift - Part 1: Pumps (ISO 15136-1:2001)

Petroleum and natural gas industries - Pipeline transportation systems - Welding of pipelines (ISO 13847:2000 modified)

Erdöl- und Erdgasindustrien - Rohrleitungstransportsysteme - Schweißen von Rohrleitungen (ISO 13847:2000 modifiziert) DPREVIEW

(standards.iteh.ai) Industries du pétrole et du gaz naturel - Conduites pour systemes de transport -Soudage des conduites (ISO 13847:2000 modifiée) 2002

https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-

78b2bd1e7d6d/sist-en-iso-15136-1-2002 Ta slovenski standard je istoveten z: EN ISO 15136-1:2001

ICS:

75.180.10 Oprema za raziskovanje in odkopavanje

Exploratory and extraction equipment

SIST EN ISO 15136-1:2002

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 15136-1:2002 https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

SIST EN ISO 15136-1:2002

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN ISO 15136-1

July 2001

ICS 75.180.10

English version

Downhole equipment for petroleum and natural gas industries -Progressing cavity pump systems for artificial lift - Part 1: Pumps (ISO 15136-1:2001)

Equipement de fond de trou pour les industries du pétrole et du gaz naturel - Pompes de fond à cavité progressive pour activation des puits - Partie 1: Pompes (ISO 15136-1:2001) Bohrloch-Ausrüstung für die Erdöl- und Erdgasindustrie -Exenterschneckentiefpump-Fördersysteme - Teil 1: Pumpen (ISO 15136-1:2001)

This European Standard was approved by CEN on 15 July 2001.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom.

78b2bd1e7d6d/sist-en-iso-15136-1-2002

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2001 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. EN ISO 15136-1:2001 E

EN ISO 15136-1:2001 (E)

CORRECTED 2002-01-30

Foreword

This document (ISO 15136-1:2001) has been prepared by Technical Committee ISO/TC 67 "Materials, equipment and offshore structures for petroleum and natural gas industries" in collaboration with Technical Committee CEN/TC 12 "Materials, equipment and offshore structures for petroleum and natural gas industries", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2002, and conflicting national standards shall be withdrawn at the latest by June 2002.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

(standards.iteh.ai)

SIST EN ISO 15136-1:2002

https://standards.iteh.ai**Endorsementinotice**415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

The text of the International Standard ISO 15136-1:2001 has been approved by CEN as a European Standard without any modifications.

INTERNATIONAL STANDARD

ISO 15136-1

First edition 2001-07-15

Downhole equipment for petroleum and natural gas industries — Progressing cavity pump systems for artificial lift —

Part 1: **Pumps**

iTeh STANDARD PREVIEW Équipement de fond de trou pour les industries du pétrole et du gaz

Equipement de fond de trou pour les industries du petrole et du gaz naturel — Pompes de fond à cavité progressive pour activation des puits —

Partie Jr Pompes 5136-1:2002

https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

Reference number ISO 15136-1:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 15136-1:2002 https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

© ISO 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch

Printed in Switzerland

Contents

Forewo	ord	iv
Introdu	iction	v
1	Scope	1
2	Terms and definitions	1
3	Symbols	3
4	Functional specification	3
4.1	General	3
4.2	PCP type	
4.3	Well parameters	
4.4	Operational parameters	
4.5	Environmental compatibility	
4.6	Compatibility with well equipment	
4.7 4.8	Quality control requirements Design validation documentation	
4.0	-	
5	Technical specification General	5
5.1	General II en SIANDARD PREVIEW	5
5.2	PCP characteristics	5
5.3		
5.4	Design verification	
5.5	Design validation	
5.6 5.7	Design change	10
5.7	Functional test parameters78b2bu1re7dod/sist-er-iso-15136-1-2002	
6	Supplier/manufacturer requirements	
6.1	Document and data control	
6.2	User/purchaser documentation	
6.3	Product identification	
6.4	Quality control	
6.5	Functional tests	12
Annex	A (normative) Example of performance curves for pump selection	13
Annex	B (normative) PCP test report data sheet	14
Annex	C (informative) Application design specification data sheet	15
Annex	D (informative) Accessories	16
Annex	E (informative) Engineering methodology	21
Annex	F (informative) Description of PCP system	27

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 15136 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 15136-1 was prepared by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum and natural gas industries*, Subcommittee SC4, *Drilling and production equipment*.

ISO 15136 consists of the following parts, under the general title Downhole equipment for petroleum and natural gas industries — Progressing cavity pump systems for artificial liften a

- Part 1: Pumps
- Part 2: Drive heads

SIST EN ISO 15136-1:2002 https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

Annexes A and B form a normative part of this part of ISO 15136. Annexes C, D, E and F are for information only.

Introduction

This part of ISO 15136 has been developed by users/purchasers and suppliers/manufacturers of progressing cavity pumps (PCP) for artificial lift use in the petroleum and natural gas industries worldwide. This part of ISO 15136 is intended to give requirements and information to both parties in the selection, manufacture, testing and use of progressing cavity pumps. Further, this part of ISO 15136 addresses supplier/manufacturer requirements, which set the minimum parameters with which suppliers/manufacturers must comply to claim conformity with this part of ISO 15136.

A progressing cavity pump comprises two helical gears, one rotating inside the other. The stator and rotor axes are parallel and spaced between each other. The external helical gear (stator) has one more thread (or tooth) than the internal helical gear (rotor). Whatever the number of threads of the two elements, they must always differ by one. The fluid moves from suction to discharge. The discharge and the suction are always isolated from each other by a constant length seal line. Definitions of the accessories, engineering methodology and description of the PCP system, including illustrations, are provided in annexes D, E and F respectively.

Users of this part of ISO 15136 should be aware that further or differing requirements might be needed for individual applications. This part of ISO 15136 is not intended to inhibit a supplier/manufacturer from offering, or the user/purchaser from accepting, alternative equipment or engineering solutions. This may be particularly applicable where there is innovative or developing technology. Where an alternative is offered, the supplier/manufacturer should identify any variations from this part of ISO 15136 and provide details revealed to the supplier of the supplication of the s

(standards.iteh.ai)

<u>SIST EN ISO 15136-1:2002</u> https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 15136-1:2002 https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

Downhole equipment for petroleum and natural gas industries — Progressing cavity pump systems for artificial lift —

Part 1: **Pumps**

1 Scope

This part of ISO 15136 provides guidelines and requirements for subsurface progressing cavity pumps (PCP) used in the petroleum and natural gas industries for the production of single and multiphase fluids, based on the principle defined in [2].

This part of ISO 15136 is applicable to the subsurface progressing cavity pump. It refers to, but is not applicable to, intermediate components and accessories that are necessary to make a complete pumping unit. It does not include requirements for shipping, loading and transportation.

2 Terms and definitions

For the purposes of this part of ISO 15136, the following terms and definitions apply (for illustration, see annexes D, E and F). https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-78b2bd1e7d6d/sist-en-iso-15136-1-2002

(standards.iteh.ai)

2.1

cavity

lenticular, spiral, separate volume created between the pump stator and rotor when they are assembled

2.2

displacement

volume of fluid pumped in one revolution of the rotor in the stator

2.3

drive string

device transmitting power (usually sucker rods) between the drivehead and the PCP

2.4

dynamic level

fluid level under standard conditions of temperature and pressure when the PCP is in operation

NOTE Standard conditions, unless otherwise indicated, are 15 °C and 0,101 3 MPa.

2.5

flowrate

volume of fluid pumped per time unit

2.6

head rating

maximum allowable differential pressure of the PCP

ISO 15136-1:2001(E)

2.7

helix

continuous spiral with a constant pitch

2.8

insert pump

pump whose stator is inserted into the tubing using the drive string

2.9

interference

radial fit between the pump rotor and stator

2.10

pitch length

distance between two crests belonging to the same seal line

NOTE The rotor and stator have different pitch lengths, p_r and p_s respectively (see Figures E.1, E.2 and F.1).

2.11

PCP

progressing cavity pump

pump consisting of a stator and a rotor whose geometry of assembly is such that it creates two or more series of lenticular, spiral, separate cavities

2.12 rotor

iTeh STANDARD PREVIEW

pump shaft, whose external surface is in the form of a single or multiple helix, provided with a connection to attach to the drive string (standards.iten.ai)

2.13

SIST EN ISO 15136-1:2002 rotor stop st/da408415-009d-471d-9f4edevice which determines the rotor position during PCP installation <u>SEUdation</u> during PCP installation

See Figure D.1.

2.14

seal line

helix formed by the line of contact between rotor and stator

2.15

slippage

fluid leakage occurring across the dynamic seal lines between the cavities

2.16

static level

stabilized fluid level under standard conditions of temperature and pressure when the PCP is at a stopped position

NOTE Standard conditions, unless otherwise indicated, are 15 °C and 0,101 3 MPa.

2.17

stator

housing and a lining (typically elastomeric) in the form of a double or multiple internal helix, which always has one more helix than the rotor, with a connection to the production tubing

2.18

submergence

difference between the dynamic level and the PCP setting depth

2.19

tubing-conveyed pump

pump whose stator is connected to the bottom of the tubing

3 Symbols

- $d_{\rm r}$ rotor minor diameter, i.e. the diameter of the circle tangent to the inner rotor lobes
- $D_{\rm r}$ rotor major diameter, i.e. the diameter of the circle tangent to the outer rotor lobes
- ds stator minor diameter, i.e. the diameter of the circle tangent to the inner stator lobes
- D_s stator major diameter, i.e. the diameter of the circle tangent to the outer stator lobes
- *P*_r rotor pitch length
- Ps stator pitch length
- *n*_r number of rotor lobes
- N pump revolutions per minute

For illustration, see Figures E.1. E.2 and E.3. NDARD PREVIEW

4 Functional specification

SIST EN ISO 15136-1:2002

(standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/da408415-009d-471d-9f4e-

78b2bd1e7d6d/sist-en-iso-15136-1-2002

The user/purchaser shall prepare a functional specification to order products which conform with this part of ISO 15136 in which the requirements and operating conditions listed in 4.2 to 4.6, as appropriate, and/or the supplier's/manufacturer's specific product (see example of data form in annex C) shall be specified.

These requirements and operating conditions may be conveyed by means of a dimensional drawing, data sheet or other suitable documentation.

4.2 PCP type

4.1

Tubing-conveyed;

General

insert PCP.

4.3 Well parameters

- Sizes, grades, mass, thread of casing, liner, tubing;
- depth (true vertical and measured);
- perforation intervals (true vertical and measured);
- deviation survey;
- packer, anchor data, landing nipple or other restriction if any.