

SLOVENSKI STANDARD SIST EN 3460:2019

01-september-2019

Aeronavtika - Titan TI-P99002 - Žarjen - Palice za obdelavo - a ali D ≤ 150 mm - Rm ≥ 390 MPa

Aerospace series - Titanium TI-P99002 - Annealed - Bar for machining - a or D≤ 150 mm - Rm ≥ 390 MPa

Luft- und Raumfahrt - Titan TI-P99002 - Geglüht - Stangen zum Zerspanen - a oder D ≤ 150 mm - Rm ≥ 390 MPareh STANDARD PREVIEW

Série aérospatiale - Titane TI-P99002 - Recuit - Barres pour usinage - a ou D ≤ 150 mm - Rm ≥ 390 MPa

SIST EN 3460:2019

https://standards.iteh.ai/catalog/standards/sist/5481c218-c92a-4a5f-a431-

Ta slovenski standard je istoveten 2:16157/EN 3460:2019

ICS:

49.025.30 Titan Titanium

SIST EN 3460:2019 en,fr,de

SIST EN 3460:2019

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 3460:2019

https://standards.iteh.ai/catalog/standards/sist/5481c218-c92a-4a5f-a431-abf66a7b6157/sist-en-3460-2019

EUROPEAN STANDARD

EN 3460

NORME EUROPÉENNE EUROPÄISCHE NORM

June 2019

ICS 49.025.30

English Version

Aerospace series - Titanium TI-P99002 - Annealed - Bar for machining - a or $D \le 150 \text{ mm}$ - $Rm \ge 390 \text{ MPa}$

Série aérospatiale - Titane TI-P99002 - Recuit - Barres pour usinage - a ou D \leq 150 mm - Rm \geq 390 MPa

Luft- und Raumfahrt - Titan TI-P99002 - Geglüht - Stangen zum Zerspanen - a oder D \leq 150 mm - Rm \geq 390 MPa

This European Standard was approved by CEN on 26 June 2017.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

Turkey and United Kingdom.

**Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

**Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

**Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

**Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Company, Greece, Hungary, Iceland, Italy, Latvia, Lithuania, Luxembourg, Switzerland, Switzerland, Switzerland, Switzerland, Croatia, Cyprus, Czech Republic, Denmark, Company, Greece, Hungary, Greece, Hungary, Croatia, Cyprus, Czech Republic, Denmark, Company, Greece, Hungary, Croatia, Cyprus, Czech Republic, Company, Croatia, Cyprus, Cyprus

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

Cont	tents	Page
Europ	oean foreword	3
Introd	ductionduction	4
1	Scope	5
2	Normative references	5
3	Terms and definitions	5
4	Requirements	5

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 3460:2019

https://standards.iteh.ai/catalog/standards/sist/5481c218-c92a-4a5f-a431-abf66a7b6157/sist-en-3460-2019

European foreword

This document (EN 3460:2019) has been prepared by the Aerospace and Defence Industries Association of Europe - Standardization (ASD-STAN).

After enquiries and votes carried out in accordance with the rules of this Association, this Standard has received the approval of the National Associations and the Official Services of the member countries of ASD, prior to its presentation to CEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2019, and conflicting national standards shall be withdrawn at the latest by December 2019.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 3460:2019</u> https://standards.iteh.ai/catalog/standards/sist/5481c218-c92a-4a5f-a431-abf66a7b6157/sist-en-3460-2019

Introduction

This document is part of the series of EN metallic material standards for aerospace applications. The general organization of this series is described in EN 4258.

This document has been prepared in accordance with EN 4500-004.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 3460:2019</u> https://standards.iteh.ai/catalog/standards/sist/5481c218-c92a-4a5f-a431-abf66a7b6157/sist-en-3460-2019

1 Scope

This document specifies the requirements relating to:

Titanium TI-P99002
Annealed
Bar for machining a or $D \le 150$ mm $R_m \ge 390$ MPa

for aerospace applications.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 2043, Aerospace series — Metallic materials — General requirements for semi-finished product qualification (excluding forgings and castings)

EN 4258, Aerospace series — Metallic materials — General organization of standardization — Links between types of EN standards and their use

EN 4500-004, Aerospace series — Metallic materials — Rules for drafting and presentation of material standards — Part 004: Specific rules for titanium and titanium alloys

EN 4800-002, Aerospace series — Titanium and titanium alloys — Technical specification — Part 002: Bar and section

3 Terms and definitions SIST EN 3460.2019 abf66a7b6157/sist-en-3460-2019

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

4 Requirements

Table 1 shows the requirements for titanium TI-P99002 — Annealed — Bar for machining.

${\bf Table~1-Requirements~for~titanium~TI-P99002-Annealed-Bar~for~machining}$

-	Material designation			Titanium TI-P99002							
2	Chemical	Element		O ₂	N_2	H ₂	Fe	С	Others ^a Ti		Ti
	composition								Each	Total	
	%	min.		-	-	-	-	-	-	-	Base
		max.		0,25	0,05	0,0125	0,25	0,08	0,10	0,60	Dase
3	Method of melting			See EN 4800-002.							
4.1	Form			Bar for machining							
4.2	Method of production			-							
4.3	3 Limit dimension(s) mm			$a \text{ or } D \leq 150$							
5	Technical specification			EN 4800-002							

6.1	Delivery condition	Annealed		
	Heat treatment	$600~^{\circ}\text{C} \le \theta \le 800~^{\circ}\text{C} \ / \ t \ge 30~\text{min} \ / \ \text{AC} \ \text{or cooled in inert atmosphere}$		
6.2	Delivery condition code	U		
7	Use condition	Delivery condition		
	Heat treatment	-		

iTeh STANDARD Characteristics EW

8.1	Test sample(s)			(standards.isee EN 4800 002.					
8.2	Test piece(s)				See EN 4800-002. SIST EN 3460-2019				
8.3	Heat treatment ht		htt	ps://standards.iteh.ai/catalog/standards/sist/\$\frac{1}{2}\frac{1}					
9	Dimensions concerned mm		mm	abf66a7b6157/sist-en-3460-2019					
10	Thickness of cladding on each face		%	-					
11	<u> </u>				See EN 4800-002.				
12		Temperature	θ	°C	Ambient				
13		Proof stress	R _{p0,2}	МРа	≥ 290				
14	Т	Strength	R _m	МРа	≥ 390				
15		Elongation	Α	%	≥ 20				
16		Reduction of area	Z	%	≥ 30				
17	Hardness		lness –						
18	Sh	ear strength R _c MPa –							
19	Ве	Bending k – –							
20	Im	mpact strength –			-				
21		Temperature	θ	°C	-				
22		Time		h	_				
23		Stress	σ_{a}	MPa	-				
24	С	Elongation	a	%	-				
25		Rupture stress	σR	МРа	-				
26	Elongation at rupture –		-						
27	Notes (see line 98)				а				

44	External discontinuities	-	See EN 4800-002.			
		1	Visual testing			
61	Internal defects	-	See EN 4800-002.			
		7	<i>a</i> or <i>D</i> ≤ 100 mm	100 mm < <i>a</i> or <i>D</i> ≤ 150 mm		
		-	Class 5	Class 4		
95			STANDARD PREVIOUS (standards.iteh.ai) SIST EN 3460:2019 s.iteh.ai/catalog/standards/sist/5481c218-c92a-4 abf66a7b6157/sist-en-3460-2019			
	Dimensional inspection Notes	-	a Determination not required for routine a	acceptance.		
	Typical use	-		-		