INTERNATIONAL STANDARD

ISO 9504

Second edition 1993-04-01

Metallurgical-grade fluorspar — Determination of antimony content — Solvent extraction atomic absorption

iTeh Sspectrometric method W

(standards.iteh.ai)

Spaths fluor utilisables dans l'industrie métallurgique — Dosage de l'antimoine d'absorption atomique après https://standards.iteextractionstandards/sist/76526294-183b-4a78-8aa0-3d77ba34c7a7/iso-9504-1993

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting.

International Standard ISO 9504 was prepared by Technical Committee ISO/TC 175, Fluorspar.

ISO 9504:1993

This second edition canbels://standrdsrieplacesalogthendafiirstist/7edition4-183b-4a78-8aa0-(ISO 9504:1990), which has been updated. 3d77ba34c7a7/iso-9504-1993

Annex A of this International Standard is for information only.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 • CH-1211 Genève 20 • Switzerland
Printed in Switzerland

ii

Metallurgical-grade fluorspar — Determination of antimony content — Solvent extraction atomic absorption spectrometric method

1 Scope

This International Standard specifies a solvent extraction atomic absorption spectrometric method for the determination of the antimony content of metallurgical-grade fluorspar.

The 4-methyl-2-pentanone extract is aspirated into the air/acetylene flame of an atomic absorption spectrometer. Spectral energy at 217,6 nm from an antimony hollow-cathode lamp is passed through the flame and the absorbance is measured.

The method is applicable to products having an RD4 Preagents wantimony content equal to or greater than 0,001 % (m/m).

During the analysis, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

2 Normative references

ISO 9504:1993

The following standards contain provisions which,7/iso-9 through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 565:1990, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes of openings.

ISO 8868:1989, Fluorspar — Sampling and sample preparation.

3 Principle

A test portion is decomposed by a mixture of nitric, hydrofluoric and perchloric acids. After evaporation to fumes of sulfuric acid, the salts are dissolved in hydrochloric acid.

Antimony is extracted from a dilute hydrochloric acid solution of the decomposed test portion, containing ascorbic acid and potassium iodide, into a solution of tri-*n*-octylphosphine oxide in 4-methyl-2-pentanone.

https://standards.iteh.ai/catalog/standards/sist/76526294-1831-4278-8220s contain provisions/twhich:7/iso-954-1-053meterzeroing solution.

4.2 Hydrochloric acid, diluted 1 + 1.

Dilute one volume of hydrochloric acid (ρ 1,18 g/ml) with one volume of water.

4.3 Hydrochloric acid, diluted 1 + 9.

Dilute one volume of hydrochloric acid (ρ 1,18 g/ml) with nine volumes of water.

4.4 Nitric acid, ρ 1,38 g/ml.

4.5 Perchloric acid, ρ 1,54 g/ml, about 60 % (m/m) solution.

WARNING — Perchloric acid vapour may cause explosions in the presence of ammonia, nitrous fumes or organic matter in general.

4.6 Hydrofluoric acid, ρ 1,13 g/ml, about 40 % (m/m) solution, or ρ 1,185 g/ml, about 48 % (m/m) solution.

WARNING — Very toxic by inhalation, in contact with skin and if swallowed. Causes severe burns.

Keep container tightly closed in a well-ventilated place. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Wear suitable protective clothing and gloves. In case of accident or feeling unwell, seek medical advice immediately (show the label where possible).

4.7 Sulfuric acid. diluted 1 + 1.

Pour slowly and with care one volume of sulfuric acid (ρ 1,84 g/ml) into one volume of water.

4.8 Hydrochloric/nitric acid, mixture (aqua regia).

Mix three volumes of hydrochloric acid (ρ 1,18 g/ml) with one volume of nitric acid (4.4).

The solution shall be prepared immediately before use.

4.9 Potassium iodide/L(+)-ascorbic acid, solution iTeh STANDAR Procedure VIEW in hydrochloric acid.

Dissolve 30 g of potassium iodide and 19 g of lar warning 2 pue to the danger of serious acci-L(+)-ascorbic acid in 100 ml of 1+9 hydrochloric acid solution (4.3).

Prepare a fresh potassium iodide/ascorbicitacidesolog/stand.sorber unit in the exhaust ution each day. 3d77ba34c7a7/iso-9504-1993

4.10 Tri-*n*-octylphosphine oxide, 50 g/l solution in 4-methyl-2-pentanone.

Dissolve 5 g of tri-n-octylphosphine oxide in 100 ml of 4-methyl-2-pentanone (4.1).

4.11 Antimony, stock standard solution corresponding to 0,500 0 g of Sb per litre.

Weigh, to the nearest 0,1 mg, 0,500 0 g of antimony [purity 99,9 % (m/m) min.] and dissolve in 20 ml of agua regia (4.8). Transfer the solution quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark with 1 + 1 hydrochloric acid (4.2) and mix.

1 ml of this standard solution contains 0,500 0 mg of Sb

4.12 Antimony, standard solution corresponding to 0,050 0 g of Sb per litre.

Pipette 10 ml of the antimony stock standard solution (4.11) into a 100 ml one-mark volumetric flask, dilute to the mark with 1 + 1 hydrochloric acid (4.2) and mix.

1 ml of this standard solution contains 0,050 0 mg of Sb.

5 Apparatus

Ordinary laboratory apparatus and

- 5.1 Atomic absorption spectrometer, equipped with an air/acetylene burner and an antimony hollowcathode lamp.
- **5.2** Platinum dish, capacity about 100 ml.
- 5.3 Electric oven, capable of being maintained at a temperature of 105 °C ± 2 °C.
- **5.4 Separating funnels**, capacity 100 ml.

6 Test sample

Prepare the test sample in accordance with the procedure given in ISO 8868:1989, subclause 9.3.

dents when perchloric acid is used, it should be ISO 95handled in a special fume cupboard with an ab-

7.1 Test portion

Grind several grams of the test sample (see clause 6) in an agate mortar until it all passes a 63 µm mesh sieve (see ISO 565). Dry the sieved material for 2 h in the oven (5.3), maintained at 105 °C \pm 2 °C, allow to cool in a desiccator and weigh, to the nearest 1 mg, about 0,5 g into the platinum dish (5.2).

7.2 Blank test

Carry out a blank test simultaneously with the determination, following the same procedure and using the same quantities of all reagents as used for the determination, but omitting the test portion.

7.3 Calibration and determination

7.3.1 Preparation of calibration solutions

Into each of a series of six 100 ml separating funnels (5.4), place the respective volumes of the antimony standard solution (4.12), 1+1 hydrochloric acid (4.2)and water shown in table 1.

Table 1 — Composition of calibration solutions

Volume of antimony standard solution (4.12)	Corresponding mass of Sb	Volume of 1 + 1 hydrochloric acid (4.2)	Volume of water	
ml	mg	ml	ml	
01)	0	10	25	
1,0	0,050	9	25	
2,0	0,100	8	25	
3,0	0,150	7	25	
4,0	0,200	6	25	
5,0	0,250	5	25	

¹⁾ Zero calibration solution (blank solution for calibration-graph reagents).

Treat each of these solutions as follows:

Add 15 ml of potassium iodide/L(+)-ascorbic acid solution (4.9), then, using a pipette, add 10 ml of tri-n-octylphosphine oxide solution (4.10). Shake the funnel for 1 min. Allow the organic layer to settle, discard the aqueous layer, and draw off the organic layer into a test tube with a ground-glass stopper.

7.3.2 Preparation of the test solution

Transfer the test portion (7.1) to a platinum dish (5.2). Add 5 ml of nitric sacid (4.4) and of nitric sacid (4.6) and 10 ml size sacid hydrofluoric acid (4.6) and 10 ml of perchloric acid (4.5). Heat until dissolution is complete and evaporate the solution to white fumes of perchloric acid.

Add 10 ml of sulfuric acid (4.7). Evaporate just till the appearance of dense white fumes of sulfuric acid following the evolution of perchloric acid fumes, and heat for a further 8 min to 10 min. Remove the platinum dish from the hotplate and allow to cool. Add 10 ml of 1+1 hydrochloric acid (4.2), cover the dish with a watch-glass, heat for several minutes and then allow to cool.

Transfer the solution to a 100 ml separating funnel (5.4) with 25 ml of water. Add 15 ml of potassium iodide/L(+)-ascorbic acid solution (4.9) then, using a pipette, add 10 ml of the tri-n-octylphosphine oxide solution (4.10) and carry out the extraction procedure specified in 7.3.1, last paragraph.

7.3.3 Adjustment of atomic absorption spectrometer

Set the wavelength to 217,6 nm. Fit the air/acetylene burner and, in accordance with the manufacturer's instructions, light the appropriate flame. After 10 min preheating of the burner, adjust fuel and burner to obtain maximum absorbance while aspirating the highest-concentration calibration solution (see table 1).

Aspirate 4-methyl-2-pentanone (4.1) and the highestconcentration calibration solution alternately until the absorbance reading does not drift and then set the initial reading for 4-methyl-2-pentanone to zero absorbance.

7.3.4 Spectrometric measurements

Aspirate 4-methyl-2-pentanone (4.1) until the initial reading is again obtained (see 7.3.3). Aspirate the calibration solutions (7.3.1) and the test solutions in order of increasing absorption, starting with the blank test solution (see 7.2), and aspirating the zero calibration solution (see table 1) and the test solution at the appropriate points in the series. When a stable response is obtained for each solution, record the reading. Aspirate 4-methyl-2-pentanone between each solution. Repeat the measurements at least twice more.

7.3.5 Plotting the calibration graph

Obtain the net absorbance of each calibration solution by subtracting the absorbance of the zero calibration solution (see table 1) from the absorbance of each of the other calibration solutions.

Prepare the calibration graph by plotting the averages of the net absorbance of antimony obtained for the calibration solutions against the concentrations of

8 Expression of results

8.1 Method of calculation

Using the calibration graph (see 7.3.5), determine the concentration of antimony in the test solution corresponding to the net absorbance of this solution.

The antimony content of the sample, expressed as a percentage by mass of Sb, is given by the formula

$$\frac{\rho(\mathsf{Sb})_1 - \rho(\mathsf{Sb})_0}{m} \times 100$$

where

standards.i

is the concentration of antimony, ex- $\rho(Sb)_0$ pressed in milligrams per 10 ml, in the blank test solution (7.2), corresponding to the net absorbance read off the calibration graph (see 7.3.5);

 $\rho(Sb)_1$ is the concentration of antimony, expressed in milligrams per 10 ml, in the test solution (7.3.2), corresponding to the net absorbance read off the calibration graph (see 7.3.5);

is the mass, in milligrams, of the test mportion (see 7.1).

8.2 Precision

See informative annex A.

9 Test report

The test report shall include the following particulars:

a) all information necessary for the identification of the sample;

- b) a reference to the method used (reference to this International Standard);
- c) the results and the form in which they have been expressed;
- d) any unusual features noted during the determination;
- e) details of any operation not included in this International Standard or in the International Standards to which reference is made, as well as details of any operation regarded as optional.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9504:1993 https://standards.iteh.ai/catalog/standards/sist/76526294-183b-4a78-8aa0-3d77ba34c7a7/iso-9504-1993

Annex A (informative)

Precision of the method

A.1 General

The method was tested using three samples of metallurgical-grade fluorspar. The tests were conducted at eight laboratories in Japan. The results, indicating good correlation, are listed in table A.1.

A.2 Confirmation of non-interference of sulfuric acid and calcium

To determine the influence of sulfuric acid and calcium on the extraction of antimony, further tests were carried out with a test portion consisting of 100 µg of antimony, adding different amounts of sulfuric acid and calcium.

The results are given in figures A.1 and A.2. The figures show that neither sulfuric acid nor calcium interferes with the determination of $100 \mu g$ of antimony.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9504:1993 https://standards.iteh.ai/catalog/standards/sist/76526294-183b-4a78-8aa0-3d77ba34c7a7/iso-9504-1993

Table A.1 — Interlaboratory test results

Sb[ppm(m/m)]

	Sample									
Laboratory	Thailand-1		Thailand-2			Mexico				
	х	\bar{x}	σ_{x}	х	\bar{x}	σ_{x}	х	\bar{x}	σ_x	
1	33 34	33,5	0,7	30 30	30,0	0	10 10	10,0	0	
2	36 33	34,5	2,1	27 31	29,0	2,8	10 8	9,0	1,4	
3	29 31	30,0	1,4	31 28	29,5	2,1	13 9	11,0	2,8	
4	40 41	40,5	0,7	32 31	31,5	0,7	17 13	15,0	2,8	
5	37 38	37,5	0,7	29 29	29,0	0	8 9	8,5	0,7	
6	33 30	31,5	2,1	31 29	30,0	1,4	9 12	10,5	2,1	
7	33 33	33,0	0	34 29	31,5	3,5	7 5	6,0	1,4	
8	36 34 T (h ³ 57	AND.	30 A 24 D	P27.0E	4,2	/ 16 / 12	14,0	2,8	
$\overline{\overline{x}}$ σ_{r} σ_{R} CV		34,4 1,3 3,4 9,9		rds.it	el ^{29,7} 1 2,8 9,4			10,5 2,0 3,5 35,2		

where

х

https://standards.iteh.ai/catalog/standards/sist/76526294-183b-4a78-8aa0-

3d77ba34c7a7/iso-9504-1993 is the result of a determination;

 \bar{x} is the mean of the determinations made by a particular laboratory on a particular sample;

is the standard deviation for these determinations, given by the equation σ_x

$$\sigma_x = \sqrt{\frac{1}{n-1} \sum (x - \overline{x})^2}$$

in which n is the number of determinations;

 $\bar{\bar{x}}$ is the overall mean, for a particular sample, of the means \overline{x} , given by the equation

$$\overline{\overline{x}} = \frac{1}{p} \Sigma \overline{x}$$

in which p is the number of laboratories involved;

is the repeatability standard deviation, given by the equation σ_r

$$\sigma_{\rm f} = \sqrt{\frac{1}{p} \, \Sigma \sigma_{\rm x}^2}$$

is the reproducibility standard deviation, given by the equation

$$\sigma_{\rm R} = \sqrt{\frac{1}{p-1} \, \Sigma (\overline{x} - \overline{\overline{x}})^2 - \frac{\sigma_{\rm r}^2}{n} + \sigma_{\rm r}^2}$$
 is the coefficient of variation, given by the equation

CV

$$\mathsf{CV} = \frac{\sigma_\mathsf{R}}{\overline{\bar{x}}} \times 100$$

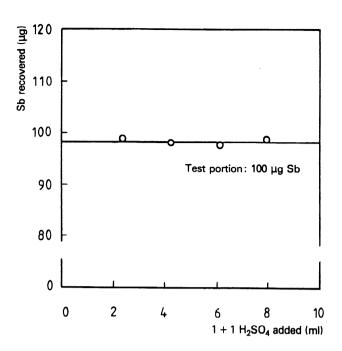


Figure A.1 — Influence of sulfuric acid

iTeh STANDARD PREVIEW

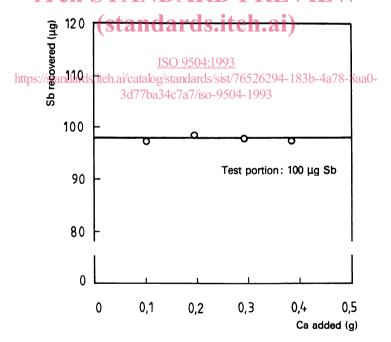


Figure A.2 — Influence of calcium