NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

Designation: D 154 – 85 (Reapproved 1996)

Standard Guide for Testing Varnishes¹

This standard is issued under the fixed designation D 154; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers the selection and use of procedures for testing varnishes. Some test methods are included, but most sections refer to specific ASTM test methods.

1.2 Varnishes may be applied under such diverse conditions to so many different surfaces and their dried films may be subjected to so many kinds of wear and exposure, that it is not possible to assure desired performance from a single selection of test methods and numerical results. Those skilled in varnish technology may find partial assurance of obtaining desired qualities in various types of varnishes through careful selection of the methods covered and intelligent interpretation of results.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
- D 56 Test Method for Flash Point by Tag Closed Tester²
- D 93 Test Methods for Flash Point by Pensky-Martens Closed Cup Tester²
- D 445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity)²
- D 479 Test Method for Reactivity of Paint Liquids³
- D 523 Test Method for Specular Gloss⁴
- D 658 Test Method for Abrasion Resistance of Organic Coatings by Air Blast Abrasive⁴
- D 968 Test Methods for Abrasion Resistance of Organic Coatings by Falling Abrasive⁴
- D 1200 Test Method for Viscosity by Ford Viscosity Cup⁴
- D 1209 Test Method for Color of Clear Liquids (Platinum-Cobalt Scale)⁵

¹ This guide is under the jurisdiction of ASTM Committee D-1 on Paint and Related Coatings, Materials, and Applications and is the direct responsibility of Subcommittee D01.33 on Polymers and Resins.

² Annual Book of ASTM Standards, Vol 05.01.

- ⁴ Annual Book of ASTM Standards, Vol 06.01.
- ⁵ Annual Book of ASTM Standards, Vol 06.04.

- D 1310 Test Method for Flash Point and Fire Point of Liquids by Tag Open-Cup Apparatus⁴
- D 1469 Test Method for Total Rosin Acids Content of Coating Vehicles⁶
- D 1475 Test Method for Density of Paint, Varnish, Lacquer, and Related Products⁴
- D 1542 Test Method for Qualitative Detection of Rosin in $Varnishes^{6}$
- D 1544 Test Method for Color of Transparent Liquids (Gardner Color Scale)⁴
- D 1545 Test Method for Viscosity of Transparent Liquids by Bubble Time Method 6
- D 1546 Test Method for Performance Tests of Clear Floor Sealers⁷
- D 1639 Test Method for Acid Value of Organic Coating Materials⁶
- D 1640 Test Methods for Drying, Curing, or Film Formation of Organic Coatings at Room Temperature⁴
- D 1641 Test Method for Exterior Durability of Varnishes⁷
- D 1644 Test Methods for Nonvolatile Content of Varnishes⁴
- D 1647 Test Method for Resistance of Dried Films of Varnishes to Water and Alkali⁶
- D 1729 Practice for Visual Evaluation of Color Differences of Opaque Materials⁴
- D 2090 Test Method for Clarity and Cleanness of Paint and Ink Liquids⁶
- D 2244 Test Method for Calculation of Color Differences from Instrumentally Measured Color Coordinates⁴
- D 2369 Test Method for Volatile Content of Coatings⁴
- D 2805 Test Method for Hiding Power of Paints by Reflectometry⁴
- D 3278 Test Method for Flash Point of Liquids by Small Scale Closed Cup Apparatus⁴
- D 3964 Practice for Selection of Coating Specimens for Appearance Measurements⁴
- D 4039 Test Method for Reflection Haze of High-Gloss Surfaces⁴
- D 4060 Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser⁴

⁶ Annual Book of ASTM Standards, Vol 06.03.

⁷ Annual Book of ASTM Standards, Vol 06.02.

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.

Current edition approved May 31, 1985. Published July 1985. Originally published as D 154 - 23. Last previous edition D 154 - 76.

³ Discontinued; see 1983 Annual Book of ASTM Standards, Vol 06.01.

E 308 Practice for Computing the Colors of Objects by Using the CIE System

LIQUID VARNISH PROPERTIES

3. Appearance

3.1 Appearance of the liquid varnish is important both for aesthetic reasons and because it indicates whether the dried film is likely to have a satisfactory appearance. Examine the liquid varnish for foreign matter, sediment or skins in accordance with Test Method D 2090.

4. Color

4.1 Most varnishes are predominantly yellow, but the color of the liquid varnish is only a preliminary indication of the color of the dried varnish film. The initial color may bleach or may darken depending upon the conditions of exposure. Determine approximately and quickly the liquid color of small specimens in Gardner-Holdt tubes by comparison with the Gardner Color Standards in accordance with Test Method D 1544.

4.2 Measure the color of extremely pale varnishes by using larger specimens in 100-mL cylinders, 300 mm deep, in accordance with Test Method D 1209.

4.3 A more precise measure of color, in terms of tristimulus values, may be made on small specimens in 10-mm cells with parallel walls in accordance with Practice E 308.

5. Viscosity

5.1 The viscosity of a varnish or clear vehicle is a property important in ease of application; varnishes for brush application are typically 1 to 2 St whereas varnishes with viscosities as high as 100 St may sometimes be added to lithography coatings or used as mixing vehicles for producing enamels. Viscosity is commonly measured at $77^{\circ}F(25^{\circ}C)$.

5.2 For the rapid, approximate measurement of the viscosity of transparent varnishes, determine the bubble time by Test Method D 1545. Report the viscosity either in stokes or in Gardner-Holdt letter designations as described in Table 1 of Test Method D 1545.

5.3 For a rapid, approximate measurement of the viscosity of translucent varnishes, determine the Ford cup efflux time in accordance with Test Method D 1200.

5.4 For the precise measurement of viscosity, use capillary viscometers as described in Test Method D 445.

6. Specific Gravity

6.1 Specific gravity of a varnish is the ratio of the weight of a given volume of the varnish at a given temperature to the weight of an equal volume of distilled water at the same temperature. Determine specific gravity or density at 77°F (25°C) or other agreed temperature in accordance with Test Method D 1475 which allows use of either a pycnometer or a weight per gallon cup.

7. Volatile Content

7.1 Volatile matter determination is an indication of the amount of material in the coating that will be given off to the atmosphere in the area where the coating is applied. Depending

TABLE 1 List of Test Methods

Test Method	Section	ASTM Designation
Liquid Varnish Properties:		
Appearance	3	D 2090
Color (Gardner)	4.1	D 1544
Color, Platinum-Cobalt Scale	4.2	D 1209
Color, tristimulus	4.3	E 308
Viscosity:	5	
Bubble time (Gardner-Holdt)	5.2	D 1545
Ford cup efflux	5.3	D 1200
Kinematic, high precision	5.4	D 445
Specific gravity	6	D 1475
Volatile content	7	D 2369
Nonvolatile matter	8	D 1644
Flash point:	9	
Tag closed-cup		D 56
Pensky Martens		D 93
Tag open-cup		D 1310
Setaflash closed tester		D 3278
Skinning	10	
Acid value	11	D 1639
Reactivity of paint liquids	12	D 479
Rosin content, quantitative	13	D 1469
Rosin content, qualitative (Lieber-		
man-Storch and Halphen-Hicks)	13	D 1542
Drying and Curing Properties:		
Drying time	14	D 1640
Print free time	15	D 1640
Dry Varnish Properties:		
Gloss:	16	
Specular gloss		D 523
Reflective haze		D 4039
Resistance of dried films to water		
and alkali	17	D 1647
Abrasion resistance:		
Carborundum air blast	18	
Falling abrasive		D 658
laber abraser		D 968
Exterior durability	10	D 4060
Color of dried film	19	D 1641
	20.1	D 2244
	20.2 877/astm-d	D 1729 154-851996
Clear floor sealers	21	D 1546

upon the method of application, the time required to vaporize the volatile, and the conditions of the atmosphere surrounding the application, it is recommended that Test Method D 2369 be used to determine the volatile content of a varnish.

8. Nonvolatile Matter

8.1 Nonvolatile content is an indication of the amount of permanent film-forming material contained in a varnish. The normal drying of a varnish film may involve varying amounts of absorption of oxygen from the air, loss of volatile solvents, and continuing decomposition of the dried film. The net result of this process may differ somewhat from a nonvolatile determination at a temperature higher than the normal drying conditions.

8.2 With due regard to the composition of the varnish, determine the nonvolatile matter in accordance with either Method A (3 h at 220°F (105° C)) or Method B (10 min at 300° F (149° C)) of Test Methods D 1644.

8.3 As noted in Test Method D 2369, nonvolatile matter can also be calculated by subtracting the volatile content from 100.