INTERNATIONAL STANDARD

ISO 9779

Second edition 1993-04-01

Metallurgical-grade fluorspar — Determination of lead content — Solvent extraction atomic absorption spectrometric

iTeh Smathadard PREVIEW

(standards.iteh.ai)

Spaths fluor utilisables dans l'industrie métallurgique — Dosage du plomb —<u>IMéthode pa</u>r spectrométrie d'absorption atomique après https://standards.itextriactiong/standards/sist/799628a8-70e6-4602-bccaadbea618718f/iso-9779-1993

1.51.7

Reference number ISO 9779:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

International Standard ISO 9779 was prepared by Technical Committee ISO/TC 175, *Fluorspar*.

<u>ISO 9779:1993</u>

This second edition canbels://standrds.replaces.logthe.dafirstist/7edition8-70e6-4602-bcca-(ISO 9779:1990), which has been updated. adbea618718f/iso-9779-1993

Annex A of this International Standard is for information only.

© ISO 1993

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Metallurgical-grade fluorspar — Determination of lead content — Solvent extraction atomic absorption spectrometric method

1 Scope

This International Standard specifies a solvent extraction atomic absorption spectrometric method for the determination of the lead content of metallurgical-grade fluorspar.

of tri-n-octylphosphine oxide in 4-methyl-2-pentanone. The 4-methyl-2-pentanone extract is aspirated into the air/acetylene flame of an atomic absorption spectrometer. Spectral energy at 283,3 nm from a lead hollow-cathode lamp is passed through the flame and the absorbance is measured.

The method is applicable to products having lead RD4 Reagents. 0,0006 % (m/m) to contents in the range 0,01 % (*m/m*). (standards.ibuingahe) analysis, use only reagents of recognized analytical grade and only distilled water or water of

2 Normative references

equivalent purity. ISO 9779:199

The following standards contain provisions which a standards/sist/799628a8-70e6-4602-bcca through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 565:1990, Test sieves - Metal wire cloth, perforated metal plate and electroformed sheet - Nominal sizes of openings.

ISO 8868:1989, Fluorspar — Sampling and sample preparation.

Principle 3

A test portion is decomposed by a mixture of nitric, hydrofluoric and perchloric acids. After evaporation to dryness, the salts are dissolved in hydrochloric acid.

Lead is extracted from a dilute hydrochloric acid solution of the decomposed test portion, containing L(+)-ascorbic acid and sodium iodide, into a solution 4.1 och-methyl-2-pentanone, for use as а spectrometer-zeroing solution.

4.2 Hydrochloric acid, diluted 1 + 1.

Dilute one volume of hydrochloric acid (ρ 1,18 g/ml) with one volume of water.

4.3 Hydrochloric acid, diluted 1 + 9.

Dilute one volume of hydrochloric acid (ρ 1,18 g/ml) with nine volumes of water.

4.4 Nitric acid, *ρ* 1,38 g/ml.

4.5 Nitric acid, diluted 1 + 1.

Dilute one volume of nitric acid (4.4) with one volume of water.

4.6 Perchloric acid, ρ 1,54 g/ml, about 60 % (m/m) solution.

WARNING — Perchloric acid vapour may cause explosions in the presence of ammonia, nitrous fumes or organic matter in general.

4.7 Hydrofluoric acid. ρ 1,13 g/ml, about 40 % (m/m)solution, or ρ 1,185 g/ml, about 48 % (*m/m*) solution.

WARNING - Very toxic by inhalation, in contact with skin and if swallowed. Causes severe burns.

Keep container tightly closed in a well-ventilated place. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Wear suitable protective clothing and gloves. In case of accident or feeling unwell, seek medical advice immediately (show the label where possible).

4.8 Sodium iodide/L(+)-ascorbic acid, solution in hydrochloric acid.

Dissolve 41,5 g of sodium iodide and 10 g of L(+)-ascorbic acid in 100 ml of 1 + 9 hydrochloric acid (4.3).

Prepare a fresh sodium iodide/ascorbic acid solution each day.

4.9 Tri-*n*-octylphosphine oxide, 50 g/l solution in

4-methyl-2-pentanone solution.

Dissolve 5 g of tri-n-octylphosphine oxide in 100 ml of 4-methyl-2-pentanone (4.1).

sorber unit in the exhaust. https://standards.iteh.ai/catalog/standa

4.10 Lead, stock standard solution corresponding to 187181/iso-9779-1993 0,200 0 g of Pb per litre.

Weigh, to the nearest 0,1 mg, 0,200 0 g of lead [purity 99,9 % (m/m) minimum] and dissolve in 30 ml of 1+1 nitric acid (4.5). Transfer the solution quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this standard solution contains 0,200 0 mg of Pb.

4.11 Lead, standard solution corresponding to 0,020 0 g of Pb per litre.

Pipette 10 ml of the lead stock standard solution (4.10) into a 100 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this standard solution contains 0,020 0 mg of Pb.

4.12 Matrix matching solution.

Weigh out 10 g of calcium carbonate and dissolve it in 30 ml of 1+1 hydrochloric acid (4.2). Transfer the solution quantitatively to a 100 ml one-mark volumetric flask, dilute to the mark with 1+9 hydrochloric acid (4.3) and mix.

Apparatus 5

Ordinary laboratory apparatus and

5.1 Atomic absorption spectrometer, equipped with an air/acetylene burner and a lead hollowcathode lamp.

5.2 Platinum dish, capacity about 100 ml.

5.3 Electric oven, capable of being maintained at a temperature of 105 °C ± 2 °C.

5.4 Separating funnels, capacity 100 ml.

(standar WARNING. a Due to the danger of serious acci-

Test sample 6

Prepare the test sample in accordance with the procedure given in ISO 8868:1989, subclause 9.3.

dents when perchloric acid is used, it should be

handled in a special fume cupboard with an ab-

7.1 Test portion

Grind several grams of the test sample (see clause 6) in an agate mortar until it all passes a 63 µm mesh sieve (see ISO 565). Dry the sieved material for 2 h in the oven (5.3), maintained at 105 °C \pm 2 °C, allow to cool in a desiccator and weigh, to the nearest 1 mg, about 1,0 g of this sample into the platinum dish (5.2).

7.2 Blank test

Carry out a blank test simultaneously with the determination, following the same procedure and using the same quantities of all reagents as used for the determination, but omitting the test portion.

Calibration and determination 7.3

7.3.1 Preparation of calibration solutions

Into each of a series of six 100 ml separating funnels (5.4), place the volumes of the lead standard solution (4.11), matrix matching solution (4.12) and water shown in table 1.

Table '	1 —	Composition	of	calibration	solutions
---------	-----	-------------	----	-------------	-----------

Volume of lead standard solution (4.11)	Corresponding mass of Pb	Volume of matrix matching solution (4.12)	Volume of water				
ml	mg	ml	ml				
01)	0	10	25				
1,0	0,020	10	24				
2,0	0,040	10	23				
3,0	0,060	10	22				
4,0	0,080	10	21				
5,0	0,100	10	20				
1) Zero calibration solution (blank solution for the calibration- graph reagents).							

Treat each of these solutions as follows:

Add 10 ml of sodium iodide/L(+)-ascorbic acid solution (4.8), then, using a pipette, add 10 ml of tri-n-octylphosphine oxide solution (4.9) and shake the funnel for 1 min. Allow the organic layer to settle, discard the aqueous layer, land draw off the organic RI layer into a test tube with a ground-glass stopper.

7.3.2 Preparation of the test solution

Transfer the test portion (7.1) to a platinum dishards/sist/799628a8-70e6-4602-bcca-(5.2). Add 5 ml of nitric acid (4.4), ad 0 ml of perchloric acid **8 Expression of re** (4.6) Heat until discolution is accurate (4.6). Heat until dissolution is complete and evaporate the solution to white fumes of perchloric acid and then to drvness.

Add 10 ml of 1+1 hydrochloric acid (4.2) and heat until drying is complete. Remove the platinum dish from the plate and allow to cool. Add 10 ml of 1+1 hydrochloric acid (4.2), cover the dish with a watchglass, heat for several minutes and then allow to cool.

Transfer the solution to a 100 ml separating funnel (5.4) with 25 ml of water. Add 10 ml of sodium iodide/L(+)-ascorbic acid solution (4.8), then, using a pipette, add 10 ml of the tri-n-octylphosphine oxide solution (4.9) and carry out the extraction procedure specified in 7.3.1, last paragraph.

7.3.3 Adjustment of atomic absorption spectrometer

Set the wavelength to 283,3 nm. Fit the air/acetylene burner and, in accordance with the manufacturer's instructions, light the appropriate flame. After 10 min preheating of the burner, adjust fuel and burner to obtain maximum absorbance while aspirating the highest-concentration calibration solution (see table 1).

Aspirate 4-methyl-2-pentanone (4.1) and the highestconcentration calibration solution alternately until the absorbance reading does not drift and then set the initial reading for 4-methyl-2-pentanone to zero absorbance.

7.3.4 Spectrometric measurements

Aspirate 4-methyl-2-pentanone (4.1) until the initial reading is again obtained (see 7.3.3). Aspirate the calibration solutions (7.3.1) and the test solutions in order of increasing absorption, starting with the blank test solution (see 7.2), and aspirating the zero calibration solution (see table 1) and the test solution at the appropriate points in the series. When a stable response is obtained for each solution, record the reading. Aspirate 4-methyl-2-pentanone between each solution. Repeat the measurements at least twice more.

7.3.5 Plotting the calibration graph and determination

Obtain the net absorbance of each calibration solution by subtracting the absorbance of the zero calibration solution (see table 1) from that of each of the other calibration solutions.

standards.iteh at he calibration graph by plotting the averages of the net absorbance of lead obtained for the cali-ISO 9779:199 bration solutions against the concentrations of lead.

Expression of results

8.1 Method of calculation

Determine the concentration of lead in the test solution corresponding to the net absorbance value of this solution using the calibration graph (see 7.3.5).

The lead content of the sample, expressed as a percentage by mass of Pb, is given by the formula

$$\frac{\rho(\mathsf{Pb})_1 - \rho(\mathsf{Pb})_0}{m} \times 100$$

where

m

- is the concentration of lead, ex- $\rho(Pb)_0$ pressed in milligrams per 10 ml, in the blank test solution (7.2), corresponding to the net absorbance read off the calibration graph (see 7.3.5);
- $\rho(Pb)_1$ is the concentration of lead, expressed in milligrams per 10 ml, in the test solution (7.3.2), corresponding to the net absorbance read off the calibration graph (see 7.3.5);
 - is the mass, in milligrams, of the test portion (see 7.1).

8.2 Precision

See informative annex A.

9 Test report

The test report shall include the following particulars:

- a) all information necessary for the identification of the sample;
- b) a reference to the method used (reference to this International Standard);

- c) the results and the form in which they have been expressed;
- d) any unusual features noted during the determination;
- e) details of any operation not included in this International Standard or in the International Standards to which reference is made, as well as details of any operation regarded as optional.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9779:1993</u>

https://standards.iteh.ai/catalog/standards/sist/799628a8-70e6-4602-bccaadbea618718f/iso-9779-1993

Annex A

(informative)

Precision of the method

Comparative analyses carried out in eight laboratories on four samples gave the results shown in table A.1.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9779:1993 https://standards.iteh.ai/catalog/standards/sist/799628a8-70e6-4602-bccaadbea618718f/iso-9779-1993

							San	nple				-p[b	pm(<i>m</i> /m)_
Laboratory		Thailand-1			Thailand-2			Vergenoeg			China		
	-	x	x	σχ	x	x	σ _x	x	\overline{x}	σ _x	x	x	σχ
	1	23 25	24	1,4	41 39	40	1,4	7 6	6,5	0,7	2 2	2	0
	2 25 25,5		0,7	43 44	43,5	0,7	7 7	7	0	2 2	2	0	
	3	25 24	24,5	0,7	44 43	43,5	0,7	7 6	6,5	0,7	2 3	2,5	0,7
	4	26 23	24,5	1,5	47 46	46,5	0,7	7 6	6,5	0,7	1 3	2	1,4
	5	24 26	25	1	43 40	41,5	2,1	7 6	6,5	0,7	4 2	3	1,4
	6	28 26	27	1	44 42	43	1,4	7 7	7	0	2 2	2	0
	7	19 21	20	1	44 38	41	4,2	4 5	4,5	0,7	2 3	2,5	0,7
	8	24 23	2 ^{3,5} e	hºS]	42 44	D4AI	RD ⁴ P	R ⁶ ₇ E	6,5	0,7	2 2	2	0
((Īx Jr VR ℃	24,2 1,3 2,3 9,5		tand ^{42,8} ds.ite 2.4 ISO ⁵ ⁹ 779:1993			h.ai) 6,4 0,6 0,9 14,1			2,2 0,8 0,6 27,3			
where		h	ttps://stan	dards.iteh	.ai/catalo	g/standar	ds/sist/79	9628a8-7	0e6-460	2-bcca-	I	······	
x	is the result of a determination; adbea618718f/iso-9779-1993												
x	is the mean	of the de	terminatio	ns made	by a parti	cular labo	ratory on	a particula	ar sample	;			
σ_x	is the standa	rd deviati	on for the	ese deterr	ninations,	given by	the equat	tion					
	$\sigma_x = \sqrt{\frac{1}{n-1}}$	$\frac{1}{1}\Sigma(x-5)$	$\left(\overline{r}\right)^2$										
_	in which <i>n</i> is the number of determinations;												
x	$ar{ar{x}}$ is the overall mean, for a particular sample, of the means $ar{x}$, given by the equation												
	$\overline{x} = \frac{1}{P} \Sigma \overline{x}$												
	in which p is the number of laboratories involved;												
σ _r	is the repeat	ability sta	ndard dev	viation, giv	en by the	equation	I						
	$\sigma_{\rm r} = \sqrt{rac{1}{P}} \Sigma \sigma_x^2$												
σ _R	is the reprod	ucibility s	tandard d	eviation, g	given by t	he equation	on						
	$\sigma_{R} = \sqrt{\frac{1}{p-1}} \Sigma(\overline{x} - \overline{\overline{x}})^2 - \frac{\sigma_{r}^2}{n} + \sigma_{r}^2$												
CV	is the coefficient of variation, given by the equation												
	$CV = \frac{\sigma_R}{\bar{x}} \times 100$												

Table A.1 — Results of interlaboratory tests

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 9779:1993

https://standards.iteh.ai/catalog/standards/sist/799628a8-70e6-4602-bccaadbea618718f/iso-9779-1993