INTERNATIONAL STANDARD

ISO 9785

First edition 1990-08-01

Shipbuilding — Ventilation of cargo spaces where internal combustion engine vehicles may be driven — Calculation of theoretical total

iTeh Sairflow required REVIEW

(standards.iteh.ai)

Construction navale — Ventilátion des espaces cargaison des navires dans lesquels des véhicules à moteur à combustion interne peuvent être utilisés — Calcul du débit d'air total théorique exigé https://standards.itch.avcatalog.standards.stst/9265d90-6d3a-4ftc-9d10-

bd3fa3e260b0/iso-9785-1990

Reference number ISO 9785:1990(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 9785 was prepared by Technical Committee ISO/TC 8, Shipbuilding and marine structures.

Annex A forms an integral part of this International <u>Standard.1</u> Annex B is for information only. https://standards.iteh.ai/catalog/standards/sist/92bd5d9b-6d3a-4f1c-9d10-

bd3fa3e260b0/iso-9785-1990

© ISO 1990

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Shipbuilding — Ventilation of cargo spaces where internal combustion engine vehicles may be driven - Calculation of theoretical total airflow required

1 Scope

This International Standard specifies methods of calculating the theoretical quantity of outdoor air required in cargo spaces of ships where internal combustion engine vehicles are driven, in order to dilute the polluted air to within the permitted occupational exposure limits. iTeh STAI

In case of lining or insulation of cargo spaces, the Annex A gives average values of the amounts of pollutants in exhaust gases from internal comvolume shall be calculated from the inside of the lining or insulation. bustion engine vehicles driven in cargo spaces in ships.

3

ISO 9785:1990

/92bd5d9b-6d3a-4flc-9d10-3.2 S-1990 Annex B gives general information and guidance as to good practice for the ventilation of cargo spaces in ships where internal combustion engine vehicles 3.2.1 General may be driven.

Users of this International Standard should NOTE 1 note that while observing the requirements of the Standard, they should at the same time ensure compliance with such statutory requirements, rules and regulations as may be applicable to the individual ship concerned.

Definitions 2

For the purposes of this International Standard, the following definitions apply.

2.1 cargo space: Space used for cargo where vehicles may be driven.

2.2 working area: Area occupied by employees at work.

2.3 occupational exposure limit: Highest air-borne concentrations averaged over a specified period of time (time-weighted average or TWA) of substances hazardous to health for employees at work.

An occupational exposure limit refers either to NOTE 2 a long-term exposure limit or to a short-term exposure limit as determined by the appropriate authority.

The outdoor supply airflow to the cargo space shall be calculated using whichever of the following criteria gives the highest value:

The volume of the cargo spaces shall be the gross

volume with no deduction for the cargoes or for

Airflow calculation

frames, webs, pillars, ducts, etc.

3.1 Volume of space

- a) minimum number of air changes according to applicable statutory requirements;
- b) required outdoor supply airflow to maintain the occupational exposure limit value.

3.2.2 Supply airflow to maintain occupational exposure limit value

The sum of the required outdoor supply airflows per vehicle in operation to maintain the occupational exposure limit value is calculated in accordance with 3.2.2.1 or 3.2.2.2 for normally polluted outdoor air or highly polluted outdoor air respectively.

3.2.2.1 Normally polluted outdoor air

The required outdoor supply airflow, q_{ν} , per vehicle in operation for normally polluted outdoor air, in cubic metres per second, is given by the equation

$$q_v = \frac{q_m}{\alpha \cdot c}$$

where

- q_m is the pollution per vehicle in operation in milligrams per second (see clause 4);
- α is the factor of dilution (see clause 5);
- *c* is the occupational exposure limit value, in milligrams per cubic metre.

(See typical examples of application in clause B.2.)

NOTE 3 The pollution contents of normally polluted outdoor air can be taken to be less than 1/40 of the occupational exposure limit value.

3.2.2.2 Highly polluted outdoor air

The required outdoor supply airflow, q_v , per vehicle in operation for highly polluted outdoor air, in cubic metres per second, is given by the equation:

$$q_{v} = \frac{q_{m}}{\alpha(c-c')}$$

where

iTeh STAND Aa) R0.3 in general cargo spaces;

 q_m , α and c are as defined in 3.2.2.1; (standarb) 9.4 incargo spaces in car carriers;

c' is the content of the pollutant in question c) 0.8 in cargo spaces in ferries with a ventilation in the outdoor air, in milligrams per cubic ISO 9785 system in which the air is supplied at one end metre. https://standards.iteh.ai/catalog/standardsmid/exhausted at the opposite end of the space. bd3fa3e260b0/iso-9785-1990

NOTE 4 See clause B.3.

4 Pollution from vehicles

The purchaser shall specify the type of engine in the vehicles, the engine size, operation cycles (activity on board) and the anticipated number of vehicles normally in operation simultaneously in each working area.

Where specific data on the amount of pollutants (substances hazardous to health) generated by these vehicles are not available, data according to clause A.1 shall be used. If the operation cycles are not the same as in clause A.1, quantities calculated according to clause A.2 shall apply.

5 Factor of dilution

The factor of dilution indicates the degree of estimated or possible dilution of the air pollution in the cargo spaces.

The purchaser shall specify the factor of dilution taking into account any legal requirements. In the absence of such specification the following factors shall apply:

Annex A

(normative)

Pollutants from vehicles in cargo spaces in ships

Assessment of pollutants in exhaust A.1 gases generated by vehicles on board ships

Average values of the amount of the pollutants in question in exhaust gases generated by vehicles with internal combustion engines running in ship's cargo holds are given in A.1.1 to A.1.5.

A.1.1 Larger trucks

These are used for loading and unloading of Ro/Ro cargo ships.

Normal operating cycle:

`eh lift (about 45 s), transport and some idling

Type of motor:

- turbo-charged compression-ignition (diese)) en 50-9785 start gine;

NDARI

- power: \approx 150kW.

A.1.2 Smaller trucks

These are used for local cargo handling on board ships.

Normal operating cycle:

lift, transport and idling.

Average NO₂ amount generated: \approx 3 mg/s.

Average CO amount generated: \approx 50 mg/s.

Type of motor:

suction-fed compression-ignition engine;

- power: \approx 74 kW.

A.1.3 Larger lorries and coaches

These may be driven on-board ferries and Ro/Ro ships.

Normal operating cycle:

charging the compressed air system for the brakes, acceleration and running at a low speed.

Average NO₂ amount generated: \approx 45 mg/s at cold start.

Type of motor:

turbo-charged compression-ignition engine;

power: \approx 150 kW.

A.1.4 Passenger cars (low speed)

The following conditions are specified when these are driven on-board ferries.

Normal operating cycle:

Average NO₂ amount generated: ≈ 36 mg/s. running at a low speed, moderate acceleration, motor braking and idling.

ISO 9785:1990 https://standards.iteh.ai/catalog/standards/sist/92verage_CO_amount(generated: ≈ 340 mg/s at cold

Type of motor:

spark-ignition engine of 1000 cm³ to 2200 cm³ capacity.

A.1.5 Passenger cars (moderate speed)

The following conditions are specified when these are driven on-board car carriers.

Normal operating cycle:

running at a moderate speed and a shorter period of idling.

Average CO amount generated:

 \approx 250 mg/s for new cars;

 \approx 320 mg/s for older cars;

both of them at cold start.

Type of motor:

spark-ignition engine of 1000 cm³ to 2200 cm³ capacity.

A.2 Quantity of pollutants in exhaust gases

The following tables of carbon monoxide (CO), nitric oxides (NO₂), hydrocarbons (HC) and nitrogen dioxide (NO₂), in exhaust gases generated by sparkignition and compression-ignition engines, apply to engines without an exhaust gas purifier. Stated values are average values and shall be considered representative of a large group of vehicles.

A.2.1 Spark-ignition engine, cylinder volume 1000 cm³ to 2200 cm³

Table A.1 indicates the pollutants for these sparkignition engines of cylinder volume 1000 cm³ to 2 200 cm³ (example of vehicle: passenger cars). The figures apply to a warm engine.

At cold start and with the choke in use, the pollution increases by 100 % or more.

Engines in modern cars (1977 and later), emit up to 50 % lower quantity of CO, 15 % to 20 % lower quantity of HC and 20 % to 25 % lower quantity of NO.

iTeh STAND

(standar

A.2.2 Compression-ignition engines

A.2.2.1 Turbo-charged compression-ignition engine, approximately 150 kW

about 100 % more CO and HC, while the quantity of NO₂ is unchanged.

A.2.2.2 Suction-fed compression-ignition engine, with air storage chamber, approximately 150 kW

Table A.3 indicates the pollution for these suctionfed compression-ignition engines with air storage chamber, of approximately 150 kW power (examples of vehicles: larger lorries and coaches). The figures apply to a warm engine.

Engines that are cold and run with an increased number of revolutions per minute emit about 100 % more CO and HC, while the quantity of NO2 is unchanged.

A.2.2.3 Suction-fed compression-ignition engine without air storage chamber

Table A.4 indicates the pollution for these suctionfed compression-ignition engines without air storage chamber (examples of vehicles: lorries and coaches). The figures apply to a warm engine.

Engines that are cold and run with an increased number of revolutions per minute emit about 100 % more CO and HC, while the quantity of NO₂ is unchanged h.ai)

A.2.2.4 Suction-fed compression-ignition engine ISO 9without air storage chamber, approximately 74 kW https://standards.iteh.ai/catalog/standards/sist/92bd5d9b-6d3a-4f1c-9d10-

Table A.2 indicates the pollutants for these turbor 3e260b Table A.5 indicates the pollution for these suctioncharged compression-ignition engines of approximately 150 kW power (examples of vehicles: larger lorries and larger trucks). The figures apply to a warm engine.

Engines that are cold-started and run with an increased number of revolutions per minute emit fed compression-ignition engines without air storage chamber, of approximately 74 kW power (examples of vehicles: fork trucks and passenger cars). The figures apply to a warm engine.

Engines that are cold and run with an increased number of revolutions per minute emit about 100 % more CO and HC, while the quantity of NO₂ is unchanged.

Table A.1

		Pollutants, mg/s				
Operating cycle	со	NO _x	НС			
Idling (600 r/min to 1 000 r/min)	100 to 150	1 to 2	10 to 15			
Constant speed, 15 km/h	200 to 250	3,3 to 3,5	15 to 20			
Constant speed, 30 km/h	250 to 300	7 to 8,5	15 to 20			
Acceleration, 0,6 m/s ² (0 km/h to 15 km/h)	250 to 300	5 to 6,5	15 to 20			
Engine braking, 0,6 m/s ² (15 km/h to 0 km/h)	110 to 140	1	28 to 33			

Table A.2

Operating cycle	Pollutants, mg/s			
	со	NO _x	НС	NO ₂
Idling	20 to 30	17 to 25	15 to 25	5 to 8
Lift, 2 550 r/min	170	10 to 100	pprox 100	5 to 50
Transport, 2 260 r/min	150	600 to 700	≈ 130	25 to 30

iTeh STANDARD PREVIEW

(standa^{Table} A³eh.ai)

¢

Operating cycle		Pollutants, mg/s			
		ISO 978 59 990	NO _x	HC	NO ₂
	ttos //standards iteh ai/catalo	p/standards/sist/92b	15d9b-6d3a-4ftc-9	d 10 -	
Idling	bd3fa3	2601 29:19-35 85-19	90 25 to 30	2 to 4	8 to 9
Lift, 2 150 r/min		50 to 60	10 to 130	10 to 15	5 to 65
Transport, 2 000 r/min		130 to 150	100 to 225	15 to 35	4 to 9

Table A.4

Operating cycle	Pollutants, mg/s			
	со	NO _x	HC	NO ₂
Idling	20 to 25	15 to 20	10 to 15	5 to 6
Lift, 2 200 r/min	50 to 60	22 to 26	40 to 50	10 to 15
Transport, 2 200 r/min	170 to 200	135 to 150	10 to 15	5 to 6

Operating cycle	Pollutants, mg/s				
	со	NO _x	НС	NO ₂	
Idling	3 to 5	2 to 5	1	0,5 to 1,5	
Lift, 3 000 r/min	50 to 60	5 to 10	30 to 40	2,5 to 5	
Transport, 3 000 r/min	60 to 70	40 to 50	10 to 20	1,5 to 2,5	

Table A.5

Annex B (informative)

General information and guidance as to good practice

The purpose of the main body of this International Standard is to ensure that exposure to substances hazardous to health should be kept as low as is reasonably practicable in work areas in cargo spaces in ships. This can as a rule be achieved by limiting exhaust gas emissions as far as possible (by controlling the traffic) and by providing a high flow of air in the cargo spaces.

B.1 Constituents of exhaust gases from internal combustion engines

The exhaust gases generated by internal combustion engines contain hundreds of chemical substances. Most of these are nitrogen (N_2) , oxygen (O_2) , carbon monoxide (CO), nitro oxide (NO), nitro gen dioxide (NO_2) , aldehydes such as formaldehyde, polyaromatics such as benzo[a]pyrene, organic and particle-shaped lead, etc. Nitric oxide and nitrogen dioxide are as a rule put together as nitric oxides and are denominated NO_x .

The air pollutants that are of immediate intereste260b0 when estimating the injurious effects to health of exhaust gases generated by spark-ignition and compression-ignition vehicles are above all carbon monoxide (CO), nitric oxide (NO) and nitrogen dioxide (NO₂). Lead and benzo[a]pyrene are also of interest.

Carbon monoxide (CO) and nitrogen dioxide (NO_2) are taken as the limiting substances when dimensioning a ventilation plant for diluting and removing exhaust gases generated by vehicles with internal combustion engines.

Where spark-ignition vehicles are concerned, CO is the limiting substance; where compression-ignition vehicles are concerned, NO_2 is the limiting substance. The correlation between these and other hazardous substances contained in exhaust gases is usually such that, when the concentrations of CO and NO_2 are below the specified limits, the concentration of other hazardous substances will also be at an acceptable level.

B.2 Airflow calculation

Pollution is generated by different types of vehicles which can either form the ship's cargo or be used for cargo-handling operations on the vessel. The required outdoor supply airflow to the cargo space is calculated according to clause 3.

When the ship is at sea and when no vehicles are in operation, the ventilation can be reduced to an outside supply airflow according to statutory requirements.

The required outdoor airflow for every vehicle should be calculated separately: by summation, for all the vehicles in operation simultaneously, the required outdoor airflow for the cargo space or working area in question is obtained.

When assessing the generation of pollution, the cargo holds should be regarded as separate volumes. Working areas where a specially high generation and concentration of exhaust gas can be expected have to be given special consideration.

For the purposes of this International Standard it <u>9783</u>, be assumed that normal operational conditions <u>1017</u>, number of vehicles operating at any one time on

- one large and three smaller trucks in operation in general cargo spaces;
- five cars in operation in cargo spaces in car carriers;
- eight cars in operation in cargo spaces in ferries (embarkation);
- twenty cars in operation in cargo spaces in ferries (disembarkation).

NOTE 5 The last specified operational condition is to be used only in the case where there is a necessity for employees to work within the cargo space during the embarkation.

Typical examples of application of the equation in 3.2.2.1 are given below, and should be regarded as minimum airflow per vehicle. The pollution is in accordance with clause 4 and clause A.1 and the factor of pollution accords with clause 5.

a) Long-term exposure limits, where the occupational exposure limit value, c, is taken as 40 mg/m³ for CO for spark-ignition engines and 4 mg/m³ for NO₂ for compression-ignition engines:

- larger trucks for loading and unloading of Ro/Ro cargo ships, starting from warm engine: $30 \text{ m}^3/\text{s}$
- smaller trucks for local handling on board ships, starting from warm engines: 4 m³/s
- larger lorries and coaches on board ferries, starting from cold engine: 14 m³/s
- larger lorries and coaches on board Ro/Ro ships, starting from cold engine: 38 m³/s
- passenger cars on board ferries, starting from cold engine: 11 m³/s
- new passenger cars on board car carriers

starting from cold engine: 16 m³/s

starting from warm engine: 9 m³/s

- b) Short-term exposure limit where c is taken as 120 mg/m³ for CO for spark-ignition engines and 8 mg/m³ for NO₂ for compression-ignition enaines:
 - from cold engine: 4 m³/s
 - larger lorries and coaches on board ferries, starting from cold engine: 7 m3/s <u>ISO 9785:1990</u>

B.3 Factor of dilution

The following can be used as a guide-line when specifying the factor of dilution.

In most cases a dilution factor of 0,7 to 0,9 can be adopted. If too many difficulties are encountered in the layout and arrangements of air ducts and if the ship's structure and cargo can be expected to involve large obstructions to air circulation, the dilution factor should be reduced. In the most unfavourable cases, it may reach half the above values.

B.4 Ventilation system and ducting: general considerations

Duct runs and the location of supply air and exhaust air openings have to be made to suit the design of the particular ship, the estimated cargo handling and the exhaust emission in working areas.

The following generally applies:

- Supply air and exhaust air openings should be located so that the ventilation will be concentrated to those areas in which the emissions of exhaust gases are particularly high and in which employees work.
- Supply air and exhaust air openings should also be located, wherever possible, where they will not be obstructed by cargo or screened by webplates, frames, etc.

Supply air and exhaust air openings should be passenger cars on board ferries, starting designed so that the maximum air velocity in the opening does not exceed 10 m/s. (standards.ite

> - Consideration should be given to the likelihood of there being unventilated zones screened behttps://standards.iteh.ai/catalog/standards/sist/921bind/objectsflandlalso to the fact that exhaust bd3fa3e260b0/iso-9785-1gases readily accumulate in low-lying spaces and under the vehicles.

- The airflow will follow the path of least resistance, and most of the air will thus flow in open spaces, such as above the cargo, vehicles, etc.
- Measures should be taken to prevent polluted air from cargo spaces from dispersing into adjoining spaces where persons can be exposed, such as accommodation, engine-room, etc.