INTERNATIONAL STANDARD

ISO 9801

First edition 1997-06-15

Ophthalmic instruments — Trial case lenses

Instruments ophtalmiques — Verres de boîte d'essai

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9801:1997 https://standards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-10fe66f1177a/iso-9801-1997

ISO 9801:1997(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 9801 was prepared by Technical Committee ISO/TC 172, Optics and optical instruments, Subcommittee SC 7, Ophthalmic optics and instruments.

Annexes A, B and C of this International Standard are for information only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9801:1997 https://standards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-10fe66fl177a/iso-9801-1997

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet central@iso.ch
X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Ophthalmic instruments — Trial case lenses

1 Scope

This International Standard specifies requirements for mounted ophthalmic full- and/or reduced-aperture trial case lenses for the determination of the refractive error of the eye.

This International Standard takes priority over ISO 15004, if differences exist.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 7944:— 1), Optics and optical instruments — Reference wavelengths.

ISO 13666:— ²⁾, Ophthalmic optics — Spectacle lenses — Vocabulary.

ISO 15004:— 2), Ophthalmic instruments — Fundamental requirements and test methods.

ISO 9801:1997

https://standards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-10fe66f1177a/iso-9801-1997

3 Definitions

For the purposes of this International Standard, the definitions given in ISO 13666 and the following apply.

3.1

trial case lens

lens, in a mount, which is used to assess the refractive error of the human eye

3.2

full-aperture trial case lens

trial case lens with a protective mount of maximal practical wall thickness of approximately 1 mm, allowing the maximum available free lens aperture

3.3

reduced-aperture trial case lens

trial case lens with the designated free lens aperture significantly less than the mount outer diameter, allowing for considerable reduction in lens thicknesses to be made

3.4

additive power trial case lens set

train of spherical, cylindrical or spherocylindrical combination of trial case lenses, in which the measured backvertex power at the last surface equals the meridional sum of the labelled values of the train lenses when each element is placed in its specified frame cell (see ISO 12867)

¹⁾ To be published. (Revision of ISO 7944:1984)

²⁾ To be published.

ISO 9801:1997(E) © ISO

3.5

lens power

- (1) (spherical lens) back-vertex power, expressed in dioptres (D)
- (2) (cylindrical lens) back-vertex power in the principal meridian not equal to zero, expressed in dioptres (D)

NOTE — Cylindrical trial case lenses have one principal meridian with zero power.

3.6

prismatic power

(prismatic lens, prism) prismatic effect, measured as the displacement, in centimetres, of the light ray in a plane perpendicular to its line of incidence on the lens at a distance of 1 m

NOTE 1 Prismatic power is expressed in prism dioptres (Δ).

NOTE 2 The prism base is marked by a line or triangle on the mount (see clause 6). The position of the prism base is indicated according to ISO 8429.

4 Requirements

4.1 General

The trial case lenses shall conform to the requirements specified in ISO 15004. Conformity to the requirements specified in 4.2, 4.3 and 4.4 shall be verified as described in clause 5.

4.2 Optical requirements iTeh STANDARD PREVIEW

The trial case lenses shall conform to the requirements specified in tables 1 to 6. Conformity to these requirements shall be verified as described in 5.1.

The dioptric powers indicated in tables 1 to 4 shall be referenced to the wavelength λ = 546,07 nm or alternatively λ = 587,56 nm according to ISO/7944 ards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-

10fe66f1177a/iso-9801-1997

If the requirements are not met for both wavelengths, the reference wavelength used shall be indicated.

The requirements for lenses with nominal zero power (plano) are given in table 1.

Table 1 — Tolerances on lenses with zero power

	Tolerance on		
Nominal	mean power	residual astigmatism	prismatic power
lens power	<u>S₁+S₂</u>	S ₁ -S ₂	
D	D	D	Δ
0	± 0,03	0,03	0,06

© ISO ISO ISO 9801:1997(E)

The requirements for lenses with spherical power are given in table 2.

Table 2 — Tolerances on lenses with spherical power

	Tolerance on		
Nominal spherical power	mean power	residual astigmatism	
(absolute)	$\frac{S_1 + S_2}{2}$	$ S_1 - S_2 $	
D	D	D	
0,12	± 0,03	0,03	
> 0,12 to 6,00	± 0,06	0,03	
> 6,00 to 12,00	± 0,09	0,03	
> 12,00	± 0,12	0,03	
NOTE — S_1 and S_2 refer to the vertex powers in the principal meridians.			

The requirements for lenses with cylindrical power are as follows:

- a) The tolerances in the afocal principal meridian shall be \pm 0,03 D and 0,12 Δ .
- b) The tolerances on the cylindrical power principal meridian are given in table 3.

(standards.iteh.ai)
Table 3 — Tolerances on lenses with cylindrical power

Nominal cylindrical power https://standards.iteh.a/catalog/standards/sis/D 10fe66f1177a/iso-980	n n
0,12	± 0,03
> 0,12 to 1,00	± 0,06
> 1,00 to 4,00	± 0,09
> 4,00 to 6,00	± 0,12
> 6,00	± 0,18

The requirements for lenses with prismatic power are given in table 4.

Table 4 — Tolerances on lenses with prismatic power

Prismatic power Δ		Tolerance D	
nominal	tolerance	spherical	astigmatic
≤ 6	± 0,12	± 0,03	0,03
> 6	± 0,25	± 0,03	0,03

ISO 9801:1997(E) © ISO

The accuracy of the optical centring of spherical and cylindrical lenses shall be as given in table 5.

Table 5 — Tolerances on centration

Nominal lens power (absolute) D	Tolerance on ∆ at the geometric centre of the mount
≥ 0,12 to 2,00	± 0,12
> 2,00 to 5,00	± 0,25
> 5,00 to 8,00	± 0,38
> 8,00 to 12,00	± 0,50
> 12,00	± 0,75

The accuracy of the positions of the cylinder axis or prism base in relation to their corresponding marks (see clause 6) shall be as given in table 6.

Table 6 — Tolerances on marking of the cylinder axis and the prism base

	Nominal cylindrical power	Tolerance
Lenses with cylindrical power	ANDARD PREVIE	± 3°
(s	> 0,25 to 0,50 tandards.iteh.ai) > 0,50	± 2° ± 1°
https://standards.iteh	Nominal prismatic power ai/catalog/standards/sist/97870a15-a53f-417	Tolerance a-be95-
	≤ 0,5	± 7°
Lenses with prismatic power	> 0,5 to 1,0	± 4°
	> 1,0 to 2,0	± 2°
	> 2,0 to 10,0	± 1,5°
	> 10,0	± 1°

4.3 Construction

The following requirements shall apply to all mounts and mounted lenses.

4.3.1 Dimensions

A trial case lens shall have a circular mount, the rounded edges of which shall have a maximum radius of 1,4 mm.

The outer diameter of the mounted lens shall be $38_{-0.2}^{0}$ mm.

NOTE 1 For full- and reduced-aperture mounts in current use, the outer diameters of both mount types are equal.

The maximum thickness of the trial case lens including the mount shall not exceed 2,8 mm.

NOTE 2 Trial case lenses are intended to fit into a trial frame with a lens separation of 3 mm as specified in ISO 12867.

Full-aperture lenses with power in excess of \pm 5,00 D may exceed this thickness limit.

ISO 9801:1997(E) © ISO

Full-aperture prismatic lenses and reduced-aperture prismatic lenses with power in excess of 3,0 Δ may exceed this thickness limit on the side nearest the object.

4.3.2 Free lens aperture

For a trial case lens with a nominal lens power of not more than 12,00 D, the diameter of the free lens aperture shall not be less than 18 mm.

For a trial case lens with a nominal lens power greater than 12,00 D, the diameter of the free lens aperture shall not be less than 16 mm.

NOTE — An aperture diameter of 16 mm is acceptable for most purposes. A larger diameter is sometimes preferred.

4.3.3 Prismatic lenses

Prismatic lenses shall be mounted so that the surface nearest the eye is parallel to the plane of the mount.

The prismatic power marked on the mount shall be the power for light incident normal to the surface nearest the eye.

NOTE — This value corresponds to the result measured with a focimeter.

4.3.4 Mount

The mount shall contain no surfaces, sharp edges or corners which could cause injury to the patient or practitioner under normal conditions of use.

Marks shall be applied to the mount as described in clause 6. PREVIEW

4.4 Material and surface quality (standards.iteh.ai)

The lens shall have no blisters, blurs, scratches or other defects, nor any irregularities of the surface which can be recognized with the unaided eye. https://standards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-

These requirements shall be met over the full free lens aperture. 1997

Materials used in the construction shall be of noncorrosive composition or suitably surface-treated to render 4.4.2 them noncorrosive in clinical atmospheric conditions.

5 Test methods

All tests described in this International Standard are type tests.

5.1 Checking the optical requirements

Conformity to the requirements specified in 4.2 shall be tested using a device which does not exceed a measuring error of 0.01 D or 20 % of the given tolerance for vertex power, whichever is greater, and of 0,5° for cylinder axis direction and prism base setting.

Measurements shall be carried out at the aperture centre of the trial case lens and shall be referred to the reference plane of the test device.

NOTE — An example is given in annex A.

Test results shall be evaluated according to the general rules of statistics.

5.2 Checking material and surface quality

The material and surface quality shall be checked by observation of a "light/dark" boundary through the trial case lens.

NOTE — A suitable system is described in annex B.

ISO 9801:1997(E) © ISO

5.3 Checking construction

Conformity to the requirements specified in 4.3.1 and 4.3.2 shall be checked with a measuring device, the uncertainty of which does not exceed 0,05 mm.

Conformity to the requirements specified in 4.3.3 and 4.3.4 shall be checked by observation.

6 Functional marking

The nominal vertex or prism power shall be marked on the lens mount.

Cylindrical and prismatic lenses shall be marked with the axis direction or base direction respectively on the mount or on the lens.

If provision has not been made to prevent cylindrical and prismatic lenses turning in the mount, then the marks for the cylinder axis or the prism base shall be made on the lens.

The type of lens shall be indicated by the colour of the mount and/or by the colour of an identification mark or by use of a symbol as given in table 7.

Colour of mount or Type of lens Letter or symbol identification mark Spherical and cylindrical lenses Power value Black **Positive** standards.iteh Red Negative 1) **Prismatic** White MR Maddox rods Stenopiac slits 10fe66f1177%iss\$801-1997 White or black Pinhole discs O or PH Occluder or BL Frosted lens FL Or CL Cross line RF Red filter Green filter GF PF Polarization filter

Table 7 — Lens identification marks

7 Information supplied by the manufacturer

7.1 Accompanying documents

The trial case lenses shall be accompanied by documents containing instructions for use. In particular this information shall contain:

NOTE 1 The colour, together with certain characteristics of the mount, identifies the type and prefix of the lens, whereas the spherical, cylindrical and prismatic power can be determined from the marked values. The marking of the mount should always be on the side away from the weaver.

NOTE 2 Additional devices may be marked in a similar way.

¹⁾ In the case of crossed cylinders, the axis of the minus cylinder shall be marked in red.

- a) name and address of manufacturer;
- b) instructions for disinfection of the trial case lenses;
- c) if a set of trial case lenses is claimed to be an additive power type, then information indicating the method of use shall be supplied;
- d) if appropriate, a statement that the trial case lens set in its original packaging conforms to the transport conditions as specified in 5.3 of ISO 15004.

7.2 Identification of the trial case lens set

The box for the trial case lens set shall be permanently marked with at least the following information:

- a) name and address of manufacturer or supplier;
- b) name and model of trial case lens set;
- c) if appropriate, reference wavelength used (see 4.2);
- d) a reference to this International Standard, i.e. ISO 9801, if the manufacturer or supplier claims compliance with it.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9801:1997 https://standards.iteh.ai/catalog/standards/sist/97870a15-a53f-417a-be95-10fe66f1177a/iso-9801-1997