

IEC/PAS 61158-5-22

Edition 1.0 2009-08

PUBLICLY AVAILABLE SPECIFICATION

PRE-STANDARD

Industrial communication networks – Fieldbus specifications –
Part 5-22: Application layer service definition – Type SNpTYPE elements

(<https://standards.iteh.ai>)

Document Preview

<https://standards.iteh.ai/cat/docs/standards/iec/78315d1-b8d5-4ffc-8811-bdb1e98b344b/iec-pas-61158-5-22-2009>

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

- Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

- IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

- Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

- Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

<https://standards.iec.ch/standard/iec61158-5-22:2009>

IEC/PAS 61158-5-22

Edition 1.0 2009-08

PUBLICLY AVAILABLE SPECIFICATION

PRE-STANDARD

Industrial communication networks – Fieldbus specifications –
Part 5-22: Application layer service definition – Type SNpTYPE elements

[iTeh Standards](https://standards.iteh.ai)

Document Preview

IEC/PAS 61158-5-22:2009

<https://standards.iteh.ai/cat/docs/standards/iec/78315d1-b8d5-4ffc-8811-bdb1e98b344b/iec-pas-61158-5-22-2009>

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

PRICE CODE

XC

ICS 25.040.40; 35.100.70

ISBN 978-2-88910-796-4

CONTENTS

FOREWORD.....	5
INTRODUCTION.....	7
1 Scope.....	8
1.1 Overview	8
1.2 Specifications	9
1.3 Conformance.....	9
2 Normative references	9
3 Terms, definitions, abbreviations, symbols and conventions	10
3.1 ISO/IEC 7498-1 terms	10
3.2 ISO/IEC 8822 terms	10
3.3 ISO/IEC 9545 terms	10
3.4 ISO/IEC 8824 terms	11
3.5 Fieldbus application-layer specific definitions	11
3.6 Abbreviations and symbols	14
3.7 Conventions	17
3.7.1 Overview	17
3.7.2 General conventions.....	17
3.7.3 Conventions for class definitions	17
3.7.4 Conventions for service definitions	19
4 Concepts.....	20
4.1 Common concepts	20
4.2 Type specific concepts	20
4.2.1 Operating principle	20
4.2.2 Communication model overview	20
4.2.3 Application layer element description	21
4.2.4 Producer-consumer interaction	21
4.2.5 Device reference models	22
5 Data type ASE.....	23
5.1 Overview	23
5.2 Formal definition of data type objects	23
5.3 FAL defined data types.....	23
5.3.1 Fixed length types	23
5.3.2 String types	30
5.3.3 Domain.....	31
6 Communication model specification.....	31
6.1 ASEs.....	31
6.1.1 CeS ASE	31
6.1.2 Standard Ethernet frame (SEF) communication ASE	64
6.1.3 Management ASE.....	66
6.2 ARs	75
6.2.1 Overview	75
6.2.2 Point-to-point network-scheduled unconfirmed producer-consumer AREP	75
6.2.3 Point-to-multipoint network-scheduled unconfirmed producer-consumer AREP	75

6.2.4 Point-to-point network-scheduled confirmed client/server AREP	76
6.2.5 Point-to-point user-triggered confirmed client/server AREP	76
6.2.6 AR classes	76
6.2.7 FAL services by AREP class.....	78
6.2.8 Permitted FAL services by AREP role.....	78
Figure 1 – Producer-consumer interaction model	22
Figure 2 – RTFL device reference model	22
Figure 3 – RTFN device reference model	23
Figure 4 – Type SNpTYPE CeS device structure.....	32
Figure 5 – Successful SDO expedited download sequence	46
Figure 6 – Successful SDO normal download initialization sequence.....	46
Figure 7 – Successful SDO download sequence	47
Figure 8 – Successful SDO expedited upload sequence.....	47
Figure 9 – Successful SDO normal upload initialization sequence.....	47
Figure 10 – Successful SDO upload sequence.....	48
Figure 11 – Failed SDO expedited download initialization sequence	48
Figure 12 – Failed SDO download after initialization sequence	48
Figure 13 – Failed SDO download sequence.....	49
Figure 14 – Emergency sequence	49
Figure 15 – Heartbeat sequence	50
Figure 16 – Process data write sequence.....	50
Figure 17 – PDO mapping principle	51
Figure 18 – Process data object.....	51
Figure 19 – SEF service sequence.....	65
Table 1 – Object dictionary structure.....	33
Table 2 – Initiate SDO expedited download service.....	54
Table 3 – Initiate SDO normal download service	56
Table 4 – SDO download service	57
Table 5 – Initiate SDO expedited upload service	58
Table 6 – Initiate SDO normal upload service	59
Table 7 – SDO upload service	60
Table 8 – SDO abort service	61
Table 9 – Process data write service.....	62
Table 10 – Emergency service (EMCY).....	63
Table 11 – Heartbeat service	64
Table 12 – Send frame service	66
Table 13 – AL-Network verification service	68
Table 14 – AL-RTFL configuration service	69
Table 15 – AL-DelayMeasurement start service	70
Table 16 – AL-DelayMeasurement read service	71
Table 17 – PCS configuration service	71
Table 18 – MII read service	72

Table 19 – MII write service	72
Table 20 – AL-RTFN scan network read service	73
Table 21 – Application layer management service.....	73
Table 22 – Start synchronization service.....	74
Table 23 – Stop synchronization service	75
Table 24 – PTPNSU AREP class	77
Table 25 – PTMNSU AREP class.....	77
Table 26 – PTPNSC AREP class	77
Table 27 – PTPUTC AREP class.....	77
Table 28 – FAL services by AREP class	78
Table 29 – FAL services by AREP role	79

iteh Standards
(<https://standards.iteh.ai>)

Document Preview

IEC PAS 61158-5-22:2009

<https://standards.iteh.ai/cat/doc/standards/iec/78315d1-b8d5-4ffc-8811-bdb1e98b344b/iec-pas-61158-5-22-2009>

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –Part 5-22: Application layer service definition –
Type SNpTYPE elements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public.

IEC-PAS 61158-5-22 has been processed by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

The text of this PAS is based on the following document:

This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document

Draft PAS	Report on voting
65C/530/PAS	65C/534/RVD

Following publication of this PAS, which is a pre-standard publication, the technical committee or subcommittee concerned may transform it into an International Standard.

This PAS shall remain valid for an initial maximum period of 3 years starting from the publication date. The validity may be extended for a single 3-year period, following which it shall be revised to become another type of normative document, or shall be withdrawn.

The list of all the parts of the IEC 61158 series, under the general title *Industrial communication networks – Fieldbus specifications*, can be found on the IEC web site.

INTRODUCTION

This PAS contains an additional profile – SNpTYPE – which may be integrated into a future new edition of the IEC 61158-5 series.

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 5-22: Application layer service definition – Type SNpTYPE elements

1 Scope

1.1 Overview

The fieldbus application layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a “window between corresponding application programs.”

This part of IEC 61158-5 provides common elements for basic time-critical and non-time-critical messaging communications between application programs in an automation environment and material specific to Type SNpTYPE fieldbus. The term “time-critical” is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life.

This part of IEC 61158-5 defines in an abstract way the externally visible service provided by the fieldbus application layer in terms of

- a) an abstract model for defining application resources (objects) capable of being manipulated by users via the use of the FAL service;
- b) the primitive actions and events of the service;
- c) the parameters associated with each primitive action and event, and the form which they take; and
- d) the interrelationship between these actions and events, and their valid sequences.

The purpose of this part of IEC 61158-5 is to define the services provided to

- 1) the FAL user at the boundary between the user and the application layer of the fieldbus reference model; and
- 2) Systems Management at the boundary between the application layer and Systems Management of the fieldbus reference model.

This part of IEC 61158-5 specifies the structure and services of the fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI application layer structure (ISO/IEC 9545).

FAL services and protocols are provided by FAL application-entities (AE) contained within the application processes. The FAL AE is composed of a set of object-oriented application service elements (ASEs) and a layer management entity (LME) that manages the AE. The ASEs provide communication services that operate on a set of related application process object (APO) classes. One of the FAL ASEs is a management ASE that provides a common set of services for the management of the instances of FAL classes.

Although these services specify, from the perspective of applications, how request and responses are issued and delivered, they do not include a specification of what the requesting and responding applications are to do with them. That is, the behavioral aspects of the applications are not specified; only a definition of what requests and responses they can

send/receive is specified. This permits greater flexibility to the FAL users in standardizing such object behavior. In addition to these services, some supporting services are also defined in this part of IEC 61158-5 to provide access to the FAL to control certain aspects of its operation.

1.2 Specifications

The principal objective of this part of IEC 61158-5 is to specify the characteristics of conceptual application layer services suitable for time-critical communications, and thus supplement the OSI Basic Reference Model in guiding the development of application layer protocols for time-critical communications.

A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of services standardized as the various Types of IEC 61158, and the corresponding protocols standardized in subparts of IEC 61158-6.

This specification may be used as the basis for formal application programming interfaces. Nevertheless, it is not a formal programming interface, and any such interface will need to address implementation issues not covered by this specification, including:

- a) the sizes and octet ordering of various multi-octet service parameters; and
- b) the correlation of paired request and confirm, or indication and response, primitives.

1.3 Conformance

This part of IEC 61158-5 does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems.

There is no conformance of equipment to this application layer service definition standard. Instead, conformance is achieved through implementation of conforming application layer protocols that fulfill the application layer services as defined in this part of IEC 61158-5.

<https://standards.iteh.ai/callout/standard/iec/61158-5-22-2009>

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60559, *Binary floating-point arithmetic for microprocessor systems*

IEC 61131-3, *Programmable controllers – Part 3: Programming languages*

IEC 61158-4-22, *Industrial communication networks – Fieldbus specifications – Part 4-SNpTYPE: Data-link layer protocol specification – Type SNpTYPE elements*

IEC 61158-6-22, *Industrial communication networks - Fieldbus specifications - Part 6-SNpTYPE: Application layer protocol specification - Type SNpTYPE elements*

ISO/IEC 646, *Information technology – ISO 7-bit coded character set for information interchange*

ISO/IEC 7498-1, *Information technology – Open Systems Interconnection – Basic Reference Model: The Basic Model*

ISO/IEC 8802-3, *Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications*

ISO/IEC 8822, *Information Technology – Open Systems Interconnection – Presentation service definition*

ISO/IEC 8824-1, *Information Technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation*

ISO/IEC 9545, *Information Technology – Open Systems Interconnection – Application Layer structure*

ISO/IEC 10646, *Information technology – Universal Multiple-Octet Coded Character Set (UCS)*

ISO/IEC 10731, *Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services*

IETF RFC 791, *Internet Protocol*

3 Terms, definitions, abbreviations, symbols and conventions

For the purposes of this document, the following terms as defined in these publications apply:

3.1 ISO/IEC 7498-1 terms

- a) application entity
- b) application process
- c) application protocol data unit
- d) application service element
- e) application entity invocation
- f) application process invocation
- g) application transaction
- h) real open system
- i) transfer syntax

3.2 ISO/IEC 8822 terms

For the purposes of this document, the following terms as defined in ISO/IEC 8822 apply:

- a) abstract syntax
- b) presentation context

3.3 ISO/IEC 9545 terms

For the purposes of this document, the following terms as defined in ISO/IEC 9545 apply:

- a) application-association
- b) application-context
- c) application context name
- d) application-entity-invocation
- e) application-entity-type

- f) application-process-invocation
- g) application-process-type
- h) application-service-element
- i) application control service element

3.4 ISO/IEC 8824 terms

For the purposes of this document, the following terms as defined in ISO/IEC 8824 apply:

- a) object identifier
- b) type

3.5 Fieldbus application-layer specific definitions

3.5.1

application

function for which data is exchanged

3.5.2

application object

representation of a particular component within a device

3.5.3

acyclic data

data which is transferred from time to time for dedicated purposes

3.5.4

bit

unit of information consisting of a 1 or a 0. This is the smallest data unit that can be transmitted

3.5.5

cell

synonym for a single DL-segment which uses RTFL communication model

3.5.6

channel

path provided for conveying data

3.5.7

client

object which uses the services of a server by initiating a message to perform a task

3.5.8

communication cycle

fixed time period between which the root device issues empty frames for cyclic communication initiation in which data is transmitted utilizing CDC and MSC

3.5.9

connection

logical binding between two application objects

3.5.10

cycle time

duration of a communication cycle

3.5.11**cyclic**

events which repeat in a regular and repetitive manner

3.5.12**cyclic communication**

periodic exchange of telegrams

3.5.13**cyclic data**

data which is transferred in a regular and repetitive manner for dedicated purposes

3.5.14**cyclic data channel (CDC)**

part of one or more frames, which is reserved for cyclic data

3.5.15**data**

generic term used to refer to any information carried over a fieldbus

3.5.16**device**

physical entity connected to the fieldbus

3.5.17**error**

discrepancy between a computed, observed or measured value or condition and the specified or theoretically correct value or condition

3.5.18**error code**

identification number of a specific type of error

<https://standards.iteh.ai/canonical/standard/iec/61158-5-22:2009>

3.5.19**gateway**

device acting as a linking element between different protocols

3.5.20**index**

position of an object within the object dictionary

3.5.21**inter-cell communication**

communication between a RTFL device and a RTFN device or communication between a RTFL device and another RTFL device in different cells linked by RTFN

3.5.22**interface**

shared boundary between two functional units, defined by functional characteristics, signal characteristic, or other characteristics as appropriate

3.5.23**intra-cell communication**

communication between a RTFL device and another RTFL device in the same cell