
INTERNATIONAL
STANDARD

ISOIIEC
9899
First edition

1990-12-15

Programming languages - C

Langages de programmation - C

E w - = - = = E = = = = = =

E-

z z 2 = = 3 = =. s = - = E C Z -
Reference number

ISOAEC 9899 : 1990 (El

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

Contents

1 Scope .

2 Normative references . 1

3 Definitions and conventions . 2

4 Compliance .

5 Environment 5
5.1 Conceptual models 5

51.1 Translation environment 5
51.2 Execution environments 6

5.2 Environmental considerations 10
5.2.1 Character sets 10
5.2.2 Character display semantics 12
5.2.3 Signals and interrupts 12
5.2.4 Environmental limits 12

6 Language
6.1 Lexical elements

6.1.1 Keywords
6.1.2 Identifiers
6.1.3 Constants
6.1.4 String literals
6.1.5 Operators
6.1.6 Punctuators
6.1.7 Header names
6.1.8 Preprocessing numbers
6.1.9 Comments

6.2 Conversions
6.2.1 Arithmetic operands
6.2.2 Other operands

6.3 Expressions
6.3.1 Primary expressions
6.3.2 Postfix operators
6.3.3 Unary operators
6.3.4 Cast operators
6.3.5 Multiplicative operators
6.3.6 Additive operators
6.3.7 Bitwise shift operators
6.3.8 Relational operators
6.3.9 Equality operators
6.3.10 Bitwise AND operator
6.3.11 Bitwise exclusive OR operator
6.3.12 Bitwise inclusive OR operator
6.3.13 Logical AND operator
6.3.14 Logical OR operator
6.3.15 Conditional operator

1

3

18
18
19
19
25
30
31
32
32
33
33
34
34
36
38
39
39
43
45
46
46
48
48
49
50
50
50
51
51
51

0 ISO/IEC 1990
All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission
in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Geneve 20 l Switzerland
Printed in Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

6.4
6.5

6.6

6.7

6.8

6.9

6.3.16
6.3.17

Assignment operators
Comma operator 1 . Constant expressions

Declarations
6.5.1 Storage-class specifiers . .
6.5.2 Type specifiers
6.5.3 Type qualifiers
6.5.4 Declarators
6.5.5 Type names
6.5.6 Type definitions
6.5.7 Initialization
Statements
6.6.1 Labeled statements
6.6.2 Compound statement, or block
6.6.3 Expression and null statements
6.6.4 Selection statements . . .
6.6.5 Iteration statements . . .
6.6.6 Jump statements
External definitions
6.7.1 Function definitions .
6.7.2 External object definitions l .
Preprocessing directives . . .
6.8.1 Conditional inclusion . . .
6.8.2 Source file inclusion . . .
6.8.3 Macro replacement
6.8.4 Line control
6.8.5 Error directive
6.8.6 Pragma directive
6.8.7 Null directive . .
6.8.8 Predefined macro’names’ . .
Future language directions
6.9.1 External names
6.9.2 Character escape sequences .
6.9.3 Storage-class specifiers . .
6.9.4 Function declarators . . .
6.9.5 Function definitions . . .
6.9.6 Array parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . l

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I*

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7 Library
7.1 Introduction

7.1.1 Definitibns’of ‘terms ’
7.1.2 Standard headers
7.1.3 Reserved identifiers
7.1.4 Errors <errno.h>
7.1.5 Limits <float.h> and <limits.h>'
7.1.6 Common definitions <stddef. h>
7.1.7 Use of library functions

7.2 Diagnostics <assert.h>
7.2.1 Program diagnostics

7.3 Character handling <ctype . h>
7.3.1 Character testing functions
7.3.2 Character case mapping functions

7.4 Localization <locale.h>
7.4.1 Locale control
7.4.2 Numeric formatting convention inquiry

53
54
55
57
58
58
64
65
69
70
71
75
75
75
76
77
78
79
81
81
83
85
86
87
89
93
93
93
94
94
95
95
95
95
95
95
95

96
96
96
96
97
97
98
98
99

101
101
102
102
104
106
107
108

. . .
111

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

7.5 Mathematics <math.h> 111

7.5.1 Treatment of error conditions 111
7.5.2 Trigonometric functions 111
7.5.3 Hyperbolic functions 113
7.5.4 Exponential and logarithmic functions 114
7.5.5 Power functions
7.5.6 Nearest integer, absoke value, and rem’ainder’fun’ctions’

..... . . 115

....... 116
7.6 Nonlocaljumps <set jmp. h> 118

7.6.1 Save calling environment 118
7.6.2 Restore calling environment 119

7.7 Signal handling <signal.h> 120
7.7.1 Specify signal handling 120
7.7.2 Send signal 121

7.8 Variable arguments <stdarg . h> 122
7.8.1 Variable argument list access macros 122

7.9 Input/output <stdio.h> 124
7.9.1 Introduction 124
7.9.2 Streams 125
7.9.3 Files 126
7.9.4 Operations on files 127
7.9.5 File access functions 128
7.9.6 Formatted input/output functions 131
7.9.7 Character input/output functions 141
7.9.8 Direct input/output functions 144
7.9.9 File positioning functions 145
7.9.10 Error-handling functions 147

7.10 General utilities <&dlib.h> 149
7.10.1 String conversion functions 149
7.10.2 Pseudo-random sequence generation functions 153
7.10.3 Memory management functions 154
7.10.4 Communication with the environment 155
7.10.5 Searching and sorting utilities 157
7.10.6 Integer arithmetic functions 158
7.10.7 Multibyte character functions 159
7.10.8 Multibyte string functions 161

7.11 String handling <string.h> 162
7.11.1 String function conventions 162
7.11.2 Copying functions 162
7.11.3 Concatenation functions 163
7.11.4 Comparison functions 164
7.11.5 Search functions
7.11.6 Miscellaneous functions’

. 165

. 168
7.12 Dateandtime<time.h> 170

7.12.1 Components of time 170
7.12.2 Time manipulation functions 170
7.12.3 Time conversion functions 172

7.13 Future library directions 176
7.13.1 Errors<errno.h> 176
7.13.2 Character handling <ctype . h> 176
7.13.3 Localization <locale.h> 176
7.13.4 Mathematics <math. h> 176
7.13.5 Signal handling <signal. h> 176
7.13.6 Input/output <stdio.h>
7.13.7 General utilities <stdlib. h;

............... 176

............... 176
7.13.8 String handling <string. h> 176

iv

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

Annexes

. 177

. e . .

. . . .

. . . .

. . . .

. .

. .

. .

. .

. . .
.

. . .
. .

178
178
182
187

. 189

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.
.

.
.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .
. .

. .
. .

.
. .

. .
. . .

190
190
190
190
190
190
191
191
191
192
192
194
195
195

E Implementation limits l
. 196

. 198

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. .

. .

. .

. .

. .

. .

. .

. .

. . .
.

199
199
200
204
207
208

Index - 210

A Bibliography

B Language syntax summary
B.1 Lexical grammar
B.2 Phrase structure grammar
B.3 Preprocessing directives

C Sequence points

D Library summary
D.1 Errors <errno.h>
D.2 Common definitions <stddef . h>
D.3 Diagnostics <assert.h> . .
D.4 Character handling <ctype . h> .
D.5 Localization <locale.h> . .
D.6 Mathematics <math. h> . . .
D.7 Nonlocal jumps <set jmp. h> .
D.8 Signal handling <signal. h> .
D.9 Variable arguments <stdarg . h>
D.10 Input/output <stdio.h> . . .
D.11 General utilities <stdlib. h> .
D.12 String handling <string. h> .
D.13 Date and time <time. h> . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

F Common warnings

G Portability issues
G.l Unspecified behavior
G.2 Undefined behavior
G.3 Implementation-defined behavior
G.4 Locale-specific behavior
G.5 Common extensions

.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide standardiz-
ation. National bodies that are members of IS0 or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. IS0 and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with IS0 and IEC, also take part in the
work.

In the field of information technology, IS0 and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint
technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 ?70 of the national bodies casting
a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology.

Annexes A, B, C, D, E, F and G are for information only.

vi

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

Introduction
With the introduction of new devices and extended character sets, new features may be added to

this International Standard. Subclauses in the language and library clauses warn implementors and
programmers of usages which, though valid in themselves, may conflict with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in future
revisions of this International Standard. They are retained because of their widespread use, but their
use in new implementations (for implementation features) or new programs (for language [6.9] or
library features [7.13]) is discouraged.

This International Standard is divided into four major subdivisions:

- the introduction and preliminary elements;

- the characteristics of environments that translate and execute C programs;

- the language syntax, constraints, and semantics;

- the library facilities.

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
International Standard. References are used to refer to other related subclauses. A set of annexes
summarizes information contained in this International Standard. The introduction, the examples, the
footnotes, the references, and the annexes are not part of this International Standard.

The language clause (clause 7) is derived from ‘ ‘The C Reference Manual” (see annex A).

The library clause (clause 8) is based on the 1984 lusr-/group Standard (see annex A).

vii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

This page intentionally left blank iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

INTERNATIONAL STANDARD ISO/IEC 9899 : 1990 (E)

Programming languages - C

1 Scope
This International Standard specifies the form and establishes the interpretation of programs

written in the C programming language.’ It specifies

- the representation of C programs;

- the syntax and constraints of the C language;

- the semantic rules for interpreting C programs;

- the representation of input data to be processed by C programs;

- the representation of output data produced by C programs;

- the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

- the mechanism by which C programs are transformed for use by a data-processing system;

- the mechanism by which C programs are invoked for use by a data-processing system;

- the mechanism by which input data are transformed for use by a C program;

- the mechanism by which output data are transformed after being produced by a C program;

- the size or complexity of a program and its data that will exceed the capacity of any specific
data-processing system or the capacity of a particular processor;

- all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2 Normative references
The following standards contain provisions which, through reference in this text, constitute

provisions of this International Standard. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this International
Standard are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and IS0 maintain registers of currently valid
International Standards.

IS0 646: 1983, Information processing - IS0 7-bit coded character set for information
interchange .

IS0 4217: 1987, Codes for the representation of currencies and funds.

1 This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers. It is accompanied by
a Rationale document that explains many of the decisions of the Technical Committee that produced it.

General

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

3 Definitions and conventions
In this International Standard, “shall” is to be interpreted as a requirement on an

implementation or on a program; conversely, “shall not” is to be interpreted as a prohibition.

For the purposes of this International Standard, the following definitions apply. Other terms
are defined at their first appearance, indicated by italic type. Terms explicitly defined in this
International Standard are not to be presumed to refer implicitly to similar terms defined
elsewhere. Terms not defined in this International Standard are to be interpreted according to
IS0 2382.

3.1 alignment: A requirement that objects of a particular type be located on storage boundaries
with addresses that are particular multiples of a byte address.

3.2 argument: An expression in the comma-separated list bounded by the parentheses in a
function call expression, or a sequence of preprocessing tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as “actual
argument’ ’ or “actual parameter.”

3.3 bit: The unit of data storage in the execution environment large enough to hold an object
that may have one of two values. It need not be possible to express the address of each
individual bit of an object.

3.4 byte: The unit of data storage large enough to hold any member of the basic character set of
the execution environment. It shall be possible to express the address of each individual byte of
an object uniquely. A byte is composed of a contiguous sequence of bits, the number of which is
implementation-defined. The least significant bit is called the low-order bit; the most significant
bit is called the high-order bit.

3.5 character: A bit representation that fits in a byte. The representation of each member of
the basic character set in both the source and execution environments shall fit in a byte.

3.6 constraints: Syntactic
elements is to be interpreted.

3.7 diagnostic
implementation’

message: A message belonging to an implementation-defined subset of the
s message

3.8 forward references:

and semantic restrictions by which the exposition of language

output.

References
contain additional information relevant

to later subclauses
to this subclause.

of this International Standard that

3.9 implementation: A particular set of software, running in a particular translation
environment under particular control options, that performs translation of programs for, and
supports execution of functions in, a particular execution environment.

3.10 implementation-defined behavior: Behavior, for a correct program construct and correct
data, that depends on the characteristics of the implementation and that each implementation shall
document.

3.11 implementation limits: Restrictions imposed upon programs by the implementation.

3.12 locale-specific
culture, and language

behavior: Behavior that depends on local
that each implementation shall document.

conventions of nationality,

3.13 multibyte character: A sequence of one or more bytes representing a member of the
extended character set of either the source or the execution environment. The extended character
set is a superset of the basic character set.

3.14 object: A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences of one or
more bytes, the number, order, and encoding of which are either explicitly specified or
implementation-defined. When referenced, an object may be interpreted as having a particular
type; see 6.2.2.1.

2 General

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

3.15 parameter: An object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition. Also
known as “formal argument” or “formal parameter.”

3.16 undefined behavior: Behavior, upon use of a nonportable or erroneous program construct,
of erroneous data, or of indeterminately valued objects, for which this International Standard
imposes no requirements. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in a
documented manner characteristic of the environment (with or without the issuance of a
diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic
message).

If a “shall” or “shall not’ ’ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International Standard
by the words “undefined behavior” or by the omission of any explicit definition of behavior.
There is no difference in emphasis among these three; they all describe “behavior that is
undefined. ”

3.17 unspecified
which this Intema

behavior: Behavior, for a correct
.tional Standard explicitly imposes no

program construct and
requirements.

Examples

2.

3.

4.

correct data, for

An example of unspecified behavior is the order in which the arguments to a function
evaluated.

An example of undefined behavior is the behavior on integer overflow.

An example of imple mentation -defined
when a signed i nteger is shifted right.

are

behavior is the propagation of the high-order bit

An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase English letters.

Forward references: bitwise shift operators (6.3.7), expressions (6.3), function calls (6.3.2.2),
the islower function (7.3.1.6), localization (7.4).

4 Compliance
A strictly conforming program shall use only those features of the language and library

specified in this International Standard. It shall not produce output dependent on any unspecified,
undefined, or implementation-defined behavior, and shall not exceed any minimum
implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming
hosted implementation shall accept any strictly conforming program. A conforming fi-eestanding
impzementation shall accept any strictly conforming program in which the use of the features
specified in the library clause (clause 7) is confined to the contents of the standard headers
<float.h>, <limits.h>, <stdarg. h>, and <stddef. h>. A c,onforrning implementation
may have extensions (including additional library functions), provided they do not alter the
behavior of any strictly conforming program.”

A conforming program is one that is acceptable to a conforming implementation.”

2 This implies that a conforming implementation reserves no identifiers other than those explicitly reserved
in this International Standard.

3 Strictly conforming programs are intended to be maximally portable among conforming implementations.
Conforming programs may depend upon nonportable features of a conforming implementation.

General

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

An
defined

implementation shall be accompanied
characteristics and all extensions.

Forward references: limits <float .h> and <limit s.h>
<stdarg . h> (7.8), common definitions <St ddef .h> (7.1. 6) .

bY a document that defines all implementation-

(7.1 S), variable arguments

General

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

5 Environment
An implementation translates C source files and executes C programs in two data-processing-

system environments, which will be called the translation environment and the execution
environment in this International Standard. Their characteristics define and constrain the results
of executing conforming C programs constructed according to the syntactic and semantic rules for
conforming implementations.

Forward references: In the environment clause (clause 5), only a few of many possible forward
references have been noted.

5.1 Conceptual models
51.1 Translation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept in
units called source files in this International Standard. A source file together with all the headers
and source files included via the preprocessing directive #include, less any source lines
skipped by any of the conditional inclusion preprocessing directives, is called a translation unit.
Previously translated translation units may be preserved individually or in libraries. The separate
translation units of a program communicate by (for example) calls to functions whose identifiers
have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inclusion (6.8. l), linkages of identifiers (6.1.2.2), source file
inclusion (6.8.2).

5.1.1.2 Translation phases

The precedence among the syntax rules of translation is specified by the following phases.4

1. Physical source file characters are mapped to the source character set (introducing new-line
characters for end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

2. Each instance of a new-line character and an immediately preceding backslash character is
deleted, splicing physical source lines to form logical source lines. A source file that is not
empty shall end in a new-line character, which shall not be immediately preceded by a
backslash character.

3. The source file is decomposed into preprocessing tokens5 and sequences of white-space
characters (including comments). ,4 source file shall not end in a partial preprocessing
token or comment. Each comment is replaced by one space character. New-line characters
are retained. Whether each nonempty sequence of white-space characters other than new-
line is retained or replaced by one space character is implementation-defined.

4. Preprocessing directives are executed and macro invocations are expanded. A #include
preprocessing directive causes the named header or source file to be processed from phase
1 through phase 4, recursively.

4 Implementations must behave as if these separate phases occur, even though many are typically folded
together in practice.

5 As described in 6.1, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #include preprocessing directive.

Environment

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

5.

6.

Each source character set member and escape sequence in character
literals is converted to a member of the execution character set.

Adjacent character string literal tokens are concatenated and adjacent
tokens are concatenated.

constants and string

wide string literal

7. White-space characters separating tokens are no longer significant. Each preprocessing
token is converted into a token. The resulting tokens are syntactically and semantically
analyzed and translated.

8. All-external object and function references are resolved. Library components are linked to
satisfy external references to functions and objects not defined in the current translation.
All such translator output is collected into a program image which contains information
needed for execution in its execution environment.

Forward references: lexical elements (6.1) preprocessing directives (6.8), trigraph sequences
(5.2.1.1).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in an
implementation-defined manner) for every translation unit that contains a violation of any syntax
rule or constraint. Diagnostic messages need not be produced in other circumstances.6

51.2 Execution environments
Two execution environments are defined: Ji-eestanding and hosted. In both cases, program

startup occurs when a designated C function is called by the execution environment. All objects
in static storage shall be initialized (set to their initial values) before program startup. The
manner and timing of such initialization are otherwise unspecified. Program termination returns
control to the execution environment.

Forward references: initialization (6.5.7).

5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program startup are
implementation-defined. There are otherwise no reserved external identifiers. Any library
facilities available to a freestanding program are implementation-defined.

The effect of program termination in a freestanding environment is implementation-defined.

5.1.2.2 Hosted environment

if
A hosted

present.
environment need not be provided, but shall conform to the following specificati ons

5.1.2.2.1 Program startup

The function called at program startup is named main. The implementation declares no
prototype for this function. It can be defined with no parameters:

int main(void) 11 *...*/
or with two parameters (referred to here as argc and argv, though any names may be used, as
they are local to the function in which they are declared):

6 The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a valid
program is still correctly translated. It may also successfully translate an invalid program.

Environment

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

ISO/IEC 9899: 1990 (E)

int main(int argc, char *argv[]) { /*...*/)

If they are defined, the parameters to the main function shall obey the following constraints:

- The value of argc shall be nonnegative.

- argv [argc] shall be a null pointer.

- If the value of argc is greater than zero, the array members argv [0] through
argv [argc-1] inclusive shall contain pointers to strings, which are given implementation-
defined values by the host environment prior to program startup. The intent is to supply to
the program information determined prior to program startup from elsewhere in the hosted
environment. If the host environment is not capable of supplying strings with letters in both
uppercase and lowercase, the implementation shall ensure that the strings are received in
lowercase.

- If the value of argc is greater than zero, the string pointed to by argv [0] represents the
program name; argv [0] [0] shall be the null character if the program name is not available
from the host environment. If the value of argc is greater than one, the strings pointed to
by argv [l] through argv [argc- 1] represent the program parameters.

- The parameters argc and argv and the strings pointed to by the argv array shall be
modifiable by the program, and retain their last-stored values between program startup and
program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may
objects described in the library clause (clause

use all the
7).

functions, macros, type definitions, and

5.1.2.2.3 Program termination

A return from the initial call to the main function is equivalent to calling the exit function
with the value returned by the main function as its argument. If the main function executes a
return that specifies no value, the termination status returned to the host environment is
undefined.

Forward references: definition of terms (7.1. l), the exit function (7.10.4.3).

5.1.2.3 Program execution

The seman tic descriptions in this
achine in wh ich issues of optimizati

Intern
.on are

ational
irrelev

Stand
ant.

ard d .escri be the behavior of an abstract

Accessing a volatile object, modifying an object, modifying a file, or calling a function that
does any of those operations are all side efjCects, which are changes in the state of the execution
environment. Evaluation of an expression may produce side effects. At certain specified points
in the execution sequence called sequence points, all side effects of previous evaluations shall be
complete and no side effects of subsequent evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no needed side effects are produced (including any caused by calling a function or
accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry into
its block. Such an object exists and retains its last-stored value during the execution of the block
and while the block is suspended (by a call of a function or receipt of a signal).

Environment 7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990
https://standards.iteh.ai/catalog/standards/sist/8574c79c-873e-41f9-9c61-

e93912de5267/iso-iec-9899-1990

	hÔ›r�h*ñ<¢ª€ã¦.Ü⁄ﬁžÇî™™�#�|gÒŠÖ�jJ˜½�E=FCq\§¡ÿîÍD�‡±¹çÖ•©ÆÍíj†©q]ËÛè½½mÙÿðe{

