

Edition 2.0 2012-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Communication networks and systems for power utility automation – Part 7-410: Basic communication structure – Hydroelectric power plants – Communication for monitoring and control

Réseaux et systèmes de communication pour l'automatisation des systèmes électriques – b2b720c49264/iec-61850-7-410-2012 Partie 7-410: Structure de communication de base – Centrales hydroélectriques – Communication pour le contrôle-commande

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2012 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur. Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub

The advanced search enables you to find IEC publications rols. The world's leading online dictionary of electronic and by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced cand 850-7-41 additional languages. Also known as the International withdrawn publications. https://standards.iteh.ai/catalog/standards/sist/1/089/69-eb90-40aa-9224-

IEC Just Published - webstore.iec.ch/justpublished)c49264/iec-6185Oustemer Service Centre - webstore.iec.ch/csc

Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email.

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Liens utiles:

Recherche de publications CEI - www.iec.ch/searchpub

La recherche avancée vous permet de trouver des publications CEI en utilisant différents critères (numéro de référence, texte, comité d'études,...).

Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

Just Published CEI - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications de la CEI. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (VEI) en ligne.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 2.0 2012-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Communication networks and systems for power utility automation – Part 7-410: Basic communication structure – Hydroelectric power plants – Communication for monitoring and control

 IEC 61850-7-410/2012

 Réseaux et systèmes de communication pour l'automatisation des systèmes électriques – b2b720c49264/iec-61850-7-410-2012

 Partie 7-410: Structure de communication de base – Centrales hydroélectriques – Communication pour le contrôle-commande

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 33.200

ISBN 978-2-83220-436-8

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FO	REWO)RD		5	
1	Scope				
2	Normative references				
3	Terms and definitions7				
4	Abbreviated terms				
5	l ogical node classes				
0	E 1			0 o	
	ວ. I 5- 2	Logical	atation of logical node tables	0	
	5.Z	Summe	etation of logical node tables	9	
	5.5	5 2 1			
		5.3.1	Group A Automatic functions		
		5.3.Z	Group A – Automatic functions		
		5.3.3	Group H – Hudropower operific logical pedag		
		5.3.4 5.2.5	Group H – Hydropower specific logical flodes	10	
		5.3.5	Group K Mochanical and non-electrical primary equipment	۲۲ ۲۵	
		5.3.0	Group R – Mechanical and non-electrical primary equipment	12	
		539	Group P – Protection related functions	IJ 12	
		5.3.0	Group Sa Supervision and monitoring DEV/UEV/	12	
		5310	Group X Switchgoor	12	
	51	Autom	atic control logical radias an arount (Ch. 31)	13	
	J. 4	5 / 1	Modelling remarks	. 13	
		542	IN: Control mode selection Name A	11	
		542	https://standards.iteh.ai/catalog/standards/sist/170897c9-eb9b-40aa-9224-	11	
		544	LN: PSS 4B filter function Name: APSE	14	
		545	IN: PSS control, common information Name: APSS	16	
		546	IN: PSS 24/B filter function Name: APST	10	
	55	Eunctic	anal logical nodes. I N Group F		
	0.0	5 5 1	Modelling remarks		
		5.5.2	I N ⁻ Functional heartbeat Name ⁻ FHBT	17	
		553	I N: Scheduler Name: ESCH	18	
		554	IN: Functional priority status Name ⁻ FXPS	18	
	56	Hvdron	power specific logical nodes. I N group H	19	
	0.0	561	Modelling remarks	19	
		5.6.2	I.N: Turbine – generator shaft bearing Name: HBRG		
		563	I Nº Combinator Name: HCOM	20	
		5.6.4	LN: Hydropower dam Name: HDAM	20	
		5.6.5	LN: Deflector control Name: HDFL	20	
		5.6.6	LN: Dam leakage supervision Name: HDLS	21	
		5.6.7	LN: Electrical brake Name: HEBR	21	
		5.6.8	LN: Governor control mode Name: HGOV	21	
		5.6.9	LN: Gate position indicator Name: HGPI	22	
		5.6.10	LN: Dam gate Name: HGTE	22	
		5.6.11	LN: Intake gate Name: HITG	23	
		5.6.12	LN: Joint control Name: HJCL	23	
		5.6.13	LN: Leakage supervision Name: HLKG	24	
		5.6.14	LN: Water level indicator Name: HLVL	24	

		5.6.15 LN: Mechanical brake Name: HMBR	25
		5.6.16 LN: Needle control Name: HNDL	25
		5.6.17 LN: Water net head data Name: HNHD	26
		5.6.18 LN: Dam over-topping protection Name: HOTP	26
		5.6.19 LN: Hydropower / water reservoir Name: HRES	27
		5.6.20 LN: Hydropower unit sequencer Name: HSEQ	27
		5.6.21 LN: Speed monitoring Name: HSPD	27
		5.6.22 LN: Surge shaft Name: HSST	28
		5.6.23 LN: Guide vanes (wicket gate) Name: HTGV	29
		5.6.24 LN: Runner blades Name: HTRB	29
		5.6.25 LN: Trash rack Name: HTRK	30
		5.6.26 LN: Turbine Name: HTUR	30
		5.6.27 LN: Hydropower unit Name: HUNT	31
		5.6.28 LN: Valve (butterfly valve, ball valve) Name: HVLV	32
		5.6.29 LN: Water control Name: HWCL	33
	5.7	Logical nodes for interface and archiving LN group I	34
		5.7.1 Modelling remarks	34
		5.7.2 LN: Fire detection and alarm Name: IFIR	34
		5.7.3 LN: Hand interface Name: IHND	34
	5.8	Logical nodes for mechanical and non-electric primary equipment LN group	
		KiTeh STANDARD PREVIEW	35
		5.8.1 Modelling remarks	35
		5.8.2 LN: Heater, cubicle heater Name: KHTR.41.	35
	5.9	Logical nodes for protection functions LN group P	35
		5.9.1 Modelling remarks	35
		5.9.2 LN: Rotor protection Name: PRIR 520/20c49264/ec-61850-7-410-2012	35
	5.10	Logical nodes for protection related functions LN group R	36
		5.10.1 Modelling remarks	36
		5.10.2 LN: Field breaker configuration Name: RFBC	36
	5.11	Logical nodes for supervision and monitoring LN group S	36
		5.11.1 Modelling remarks	36
		5.11.2 LN: Supervision of media flow Name: SFLW	36
		5.11.3 LN: Supervision of media level Name: SLVL	37
		5.11.4 LN: Supervision of the position of a device Name: SPOS	38
	F 40	5.11.5 LN: Supervision media pressure Name: SPRS	39
	5.12	Logical hodes for switchgear LN group X	41
		5.12.1 Modelling remarks	41
~	Data	5.12.2 LN: Switching control for field flashing Name: XFFL	41
6	Data	name semantics	41
7	Comr	non data classes	54
	7.1	General	54
	7.2	Maintenance and operational tag (TAG)	54
	7.3	Operational restriction (RST)	55
8	Data	attribute semantics	55
Bib	liogra	ɔhy	59
Tal	ble 1 –	Abbreviated terms	8
Tal	ble 2 –	List of logical node groups	9

10
11
11
11
12
13
13
13
13
13
16
41
56

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 61850-7-410:2012</u> https://standards.iteh.ai/catalog/standards/sist/170897c9-eb9b-40aa-9224b2b720c49264/iec-61850-7-410-2012

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 7-410: Basic communication structure – Hydroelectric power plants – Communication for monitoring and control

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61850-7-410 has been prepared by technical committee 57: Power systems management and associated information exchange.

This second edition cancels and replaces the first edition published in 2007, and constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:

- a) The logical nodes in IEC 61850-7-410:2007 that were not specific to hydropower plants have been transferred to IEC 61850-7-4:2010 and have been removed from this edition of IEC 61850-7-410.
- b) The definitions of logical nodes in this edition of IEC 61850-7-410 have been updated using the format introduced in IEC 61850-7-4:2010.
- c) Most of the modelling examples and background information that was included in IEC 61850-7-410:2007 has been transferred to IEC/TR 61850-7-510.

d) However, this edition of IEC 61850-7-410 includes additional general-purpose logical nodes that were not included in IEC 61850-7-4:2010, but are required in order to represent the complete control and monitoring system of a hydropower plant.

The text of this standard is based on the following documents:

FDIS	Report on voting
57/1274/FDIS	57/1289/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts in the IEC 61850 series, published under the general title Communication networks and systems for power utility automation can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

reconfirmed. • withdrawn,

iTeh STANDARD PREVIEW

- replaced by a revised edition, standards.iteh.ai)
- amended.

IEC 61850-7-410:2012

https://standards.iteh.ai/catalog/standards/sist/170897c9-eb9b-40aa-9224-

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 7-410: Basic communication structure – Hydroelectric power plants – Communication for monitoring and control

1 Scope

This part of IEC 61850 specifies the additional common data classes, logical nodes and data objects required for the use of IEC 61850 in a hydropower plant.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC/TS 61850-2, Communication networks and systems in substations - Part 2: Glossary

IEC 61850-7-1, Communication networks and systems for power utility automation – Part 7-1: Basic communication structure – Principles and models

IEC 61850-7-2:2010, Communication networks and systems for power utility automation – Part 7-2: Basic information and communication structure – Abstract communication service interface (ACSI)

IEC 61850-7-3:2010, Communication networks and systems for power utility automation – Part 7-3: Basic communication structure for substations and feeder equipment – Common data classes

IEC 61850-7-4:2010, Communication networks and systems for power utility automation – Part 7-4: Basic communication structure – Compatible logical node classes and data object classes

3 Terms and definitions

For the purpose of this document, the terms and definitions given in IEC 61850-2 apply.

4 Abbreviated terms

The terms listed in Table 1 are used to build concatenated Data Object Names in this document. IEC 61850-7-410 inherits all the abbreviated terms described in Clause 4 of IEC 61850-7-4:2010.

NOTE Data Object Names in the logical nodes representing PSS filter functions follow names in IEEE 421.5 as closely as possible. These names are not included in Table 1.

Torm	Description	Tarm	Description
1 erm	Action activity active activate ^a	Term	Description
ACI	Action, activity, active, activate	LKG	Leakage
Atr	Actuator	LUD	
BG	Before Gain	Man	Manual (- operation selected)
Brg	Bearing	Mint	Maintenance
Brk	Brake	Ndl	Needle (used in Pelton turbines)
Bt	Heartbeat	Nhd	Net head
BtB	Back-to-Back	Nrm	Normal
Cam	Cam, e.g. rotating non-circular disk	Nxt	Next
Сар	Capacity, capability ^a	Off	Device disengaged (= off)
Cbr	Calibration	On	Device applied (= on)
Cff	coefficient	Operate	Operate order to any device
Cm	Centimetres	Opn	Open, opened, opening ^a
Cmpl	Completed, completion, complete	Pe	Electric power
Cnd	Condenser, synchronous compensator	Pmp	Pump
Crl	Correlation	Polytr	Polytropic
Crp	Creeping, slow movement	Prec	Precondition, initial status
Cwb	Crowbar	Prt	Priority
De	Remove	Psk	Penstock
Dea	Degrees, for angle indication in °	Pss	PSS, power system stabiliser function
Dfl	Deflector (used in Pelton turbines)	Qu	Queue
Dia	Diaphragm	Rb	Runner blade
Dith	Dither	Rea	Regulation
Dn	Down below downstream lowest	Reg	Requested
Drth	Draft tube	Rna P	Range
Droop	Droop	Rnt	Repeat repetition
Dtc	Detection (standard	Raite	Rating rated
Dvc	Device	Rwy	Runaway, e.g. in runaway speed
Dw	Delta Omega	-Safo cono	Safety
Ena	Enchle, ellew energtion ^a	<u>Sft</u> :	Soft (as in soft start)
	"Fine all"	rds/sist/170	89709-6696-40aa-9224-
га	Fire all sequence (to myristors)264/iec-(69850-7-41	0-12012
FDC	Field breaker configuration	Sid	Solidity
Fir	Fire	SM	Servo, servo-motor
FIM	Flame	SNL	Speed-no-load, connected but not generating
Flsh	Flashing (e.g. field flashing)	Spir	Spiral
Flt	Fault	Srv	Service
Flw	Flow, flowing	Stl	Still, not moving
Fst	Fast	Stnd	Stand, standing
Gdv	Guide vane	Syn	Synchronous, synchronism
Grd	Gradient	Twt	Tailwater, water level at outlet
Gte	Gate, dam gate	Тр	Test Point
Hd	Head	Trb	Turbine
Hwt	Headwater, water level at intake	Trg	Trigger
Hys	Hysteresis	Unt	Unit, production unit
I	Intermediate	Up	Up, above, upstream, upper
J	Joint	Vsi	Voltage stabilizer input
Lft	Lifting, lift	Vst	Voltage stabilizer terminal (output)
Lo	Low, lower (position) ^a		
Lkd	Locked		
^a Extende	d description of IEC 61850-7-4		

Table 1 – Abbreviated terms

5 Logical node classes

5.1 Logical node groups

Logical nodes are grouped together with nodes of similar or related functions having the same first letter. Table 2 shows presently assigned letters, letters marked "reserved" may be used in future extensions to the standard series. Names of logical nodes shall start with the letter of

the group to which the LN belongs. E.g. most of the logical nodes, defined in this document, are specific for hydropower use and thus have names that start with the letter H.

А	Automatic control functions
В	Reserved
С	Control functions
D	Functions specific to distributed energy resources (DER)
E	Reserved
F	Logical nodes representing functional blocks
G	Generic references
Н	Functions specific to hydropower plants
Ι	Interface and archiving functions
J	Reserved
к	Kinetic energy, mechanical devices and equipment
L	Physical devices and common logical nodes
М	Metering and measurement
Ν	Reserved
0	Reserved STANDADD DDEV/IEW/
Р	Electrical protections
Q	Power quality standards.iteh.ai)
R	Protection related functions
S	Supervision and months 1850-7-410:2012
Т	Sensors and transmitters (including instrument transformers)
U	Reserved
V	Reserved
W	Functions specific to wind power plants
Х	Switchgear
Y	Power transformers
Z	Power system equipment

 Table 2 – List of logical node groups

5.2 Interpretation of logical node tables

The interpretation of the headings for the logical node tables is presented in Table 3.

Data Object Name	Function of the Data Object
Common Data Class	Common Data Class that defines the structure of the Data Object. See IEC 61850-7-3.
Explanation	Short explanation of the data and how it is used.
т	Transient Data – the status of data with this designation is momentary and shall be logged or reported to provide evidence of their momentary state. Some T may be only valid on a modelling level. The TRANSIENT property of DATA only applies to BOOLEAN process data attributes (FC=ST) of that DATA. Transient DATA is identical to normal DATA, except that for the process state change from TRUE to FALSE no event may be generated for reporting and for logging.
	This column defines whether data, data sets, control blocks or services are mandatory (M) or optional (O) for the instantiation of a specific logical node.
M/O	In some cases a data object can be instantiated; this is marked by "multi", i.e. Omulti or Mmulti. Instantiation shall be made by numbers 01 to 99, added directly after the data object name. The part of the data object that is instatiated is marked by {inst} in the data object explanation
	The attributes for data that are instantiated may also be mandatory or optional based on the CDC (Attribute Type) definition in IEC 61850-7-3.
	Where the letter C is used for "conditional", at least one of the items of data labelled with C shall be used from each category where C occurs.

Table 3 – Interpretation of logical node tables

All data object names are listed alphabetically in Clause 8. Despite some overlapping, the data in the logical node classes are grouped for the convenience of the reader into some of the following categories c

Common logical node informationstandards.iteh.ai)

Common logical node information is information independent of the dedicated function represented by the LN class. Mandatory data ((M)) are common to all LN classes; optional data (O) are valid for a reasonable subset of LN classes ist/170897c9-eb9b-40aa-9224-

Status information

b2b720c49264/iec-61850-7-410-2012

Status information is data which shows either the status of the process or of the function allocated to the LN class. This information is produced locally and cannot be changed remotely unless substitution is applicable. Data such as "start" or "trip" are listed in this category. Most of these data are mandatory. The data can only be read and not set from an external source.

Settings

Settings are data which are needed for the function to operate. Since many settings are dependent on the implementation of the function, only a commonly agreed minimum is standardised. They may be changed remotely, but normally not very often. The setting can not always be read back; whether it is possible or not depends on the data class used for the setting.

Measured values

Measured values are analogue data measured from the process or calculated in the functions such as currents, voltages, power, etc. This information is produced locally and cannot be changed remotely unless substitution is applicable.

Controls

Controls are data which are changed by commands such as switchgear state (ON/OFF), tap changer position or reset-able counters. They are typically changed remotely, and are changed during operation much more than settings. Data objects under controls cannot be read back.

5.3 Summary of logical nodes to be used in hydropower plants

5.3.1 General

This document specifies the compatible logical node classes to be used in hydropower plants listed in Tables 4 to 12. For other logical node classes that might be of use also in hydropower plants, see IEC 61850-7-4.

5.3.2 Group A – Automatic functions

Table 4 – Logical nodes for automatic functions

LN Class	Description
ACTM	Control mode selection. Overall LN for controllers with different possible modes.
AJCL	Joint control function, to balance total power from different sources.
APSS	PSS Control. Common information of a PSS function.
APST	PSS 2A/B filter. Represents a filter according to IEEE 421.5-2005.
APSF	PSS 4B filter. Represents a filter according to IEEE 421.5-2005.

5.3.3 Group F – Functional blocks

Table 5 – Logical nodes representing functional blocks

	Tob STANDADD DDEV/IEW/
LN Class	Description
FHBT	Heart-beat. This LN represents the heart-beat function of a controlling device. I.e. the function used to ensure that a specific device or program in a device is running.
FSCH	Scheduler. This LN represents a task scheduler that will perform predefined tasks at given times.
FXPS	Functional priority statuse This Nisgused to specify 08 Which order devices should be started or activated. b2b720c49264/iec-61850-7-410-2012

5.3.4 Group H – Hydropower specific logical nodes

Table 6 – Hydropower specific logical nodes

LN Class	Description
HBRG	Turbine – generator shaft bearing. This LN holds data pertaining to bearings, such as temperatures and lubrication oil flows.
НСОМ	Combinator (3D-CAM or 2D-CAM), optimises the relation between net head, guide vanes and runner blades. It is used in power plants with Kaplan turbines with moveable runner blades. The combinatory function will also use the FCSD LN to hold the relation curves for different net heads.
HDAM	Hydropower dam. A logical node that is used to represent the physical aspects of the dam.
HDFL	Deflector control. This logical node represents the deflector control of a Pelton turbine
HDLS	Dam leakage supervision. Represents a device that will supervise and give alarm in case of dam leakage. The actual measurement can be based on water flow.
HEBR	Electrical brake. This logical node represents an electrical brake system of a turbine.
HGPI	Gate position indicator. A device that provides the position of a dam gate. The position is given either as an angular displacement in case of sector gates or as distance from fully closed position in case of straight gates. For aperture gates and valves where the position is given as percent of full opening, either the HVLV or the SPOS logical nodes are recommended.
HGOV	Governor control. A logical node that represents the overall control of a turbine governor and the various control modes.
HGTE	Dam gate. This LN is intended to hold information about the gate. It can also present a calculated water flow through the gate, in which case the FCSD LN shall be included in the same logical device, to provide the relations. Note that in this LN the position set-point is listed under <i>Controls</i> instead of <i>Settings</i> . The normal way of controlling a gate is to send a position set-point.

_

LN Class	Description
HITG	Intake gate. This LN can be used to represent intake gates. The gates will almost never be placed in any other position than fully closed or fully open. However to cater for step-wise or other controls, the gate is normally provided with a number of position switches.
HJCL	Power plant joint control function. In plants with more than one gate or several turbines, this LN will represent the joint control function that is used to supervise the total water flow or to maintain a constant water level. The LN shall be instantiated to provide one instance for each gate and each turbine to be supervised.
HLKG	Leakage supervision. This LN can be used to measure any leakage in the plant, it is more generic than HDLS
HLVL	Water level indicator. The LN represents the water level sensing device. The output is a distance including an offset from a base level (commonly the distance above sea).
HMBR	Mechanical brake for the generator shaft. This is a LN for the brake control. The brake is used for stopping the unit during shut-down and to hold the shaft still, once the unit is stopped.
HNDL	Needle control. A specialised LN that represents the control of needles in Pelton turbines.
HNHD	Net head data. A LN that can be used to present the calculated net head data (difference between upper and lower water levels) in a hydropower plant.
НОТР	Dam overtopping protection. A protection function that will act by opening one or more gates in case of a risk for overtopping the dam. The protection will sometimes include its own water measurement device; hence an optional measured value for water level.
HRES	Water reservoir. A logical node that is used to represent the logical function of a reservoir. If the content is to be calculated, the FSCD LN shall be used to provide the relation between water level and content.
HSEQ	Start / stop sequencer. A simple LN that only presents what the sequencer is doing (inactive – starting – stopping) and in case it is active, what step it is presently working on.
HSPD	Speed monitoring. This LN is normally located in a stand-alone logical device, separated from but monitoring the turbine governor. It will also act as a placeholder for various speed limits and set-points used by the start sequencer and other control functions.
HSST	Surge shaft or surge tank. A function that is used to mitigate pressure surges in the system.
HTGV	Guide vanes: (wicketigate)h.This:logicalanddelrepresents) the physical/device/of guide vanes in a hydropower turbine. b2b720c49264/iec-61850-7-410-2012
HTRB	Runner blades. This logical node represents the physical device of runner blades in e.g. a Kaplan turbine where the runner blades can be controlled.
HTRK	Trash rack, used to prevent floating debris getting into the turbine.
HTUR	Turbine. This logical node holds extended rating plate data for a turbine in a hydropower plant.
HUNT	Hydropower production unit. This LN represents the physical device of the turbine and generator combination in a hydropower plant. It is intended as an extended rating plate that allows temporary settings of data. It also acts as a placeholder for the current operating conditions of the unit.
HVLV	Valve. This logical node represents a large valve, e.g. a valve in a penstock, butterfly or ball type valve.
HWCL	Water control function. This LN will represent one physical device that can modify the water flow though the plant, either a gate or a turbine. In case of a plant with a joint control function, the HJCL LN will provide the flow set-point to be used by HWCL.

5.3.5 Group I – Interface and archiving

Table 7 – Logical nodes for interface and archiving

LN Class	Description
IFIR	Generic fire detection and alarm function.
IHND	Generic physical human – machine interface. E.g. a push-button or another physical device that can be used as input to a controller.

5.3.6 Group K – Mechanical and non-electrical primary equipment

Table 8 – Logical nodes for mechanical and non-electric primary equipment

LN Class	Description
KHTR	Heater. The LN represents a heater, cubicle heater or any other heater that can be controlled.

5.3.7 Group P – Protection functions

NOTE Most of the logical nodes that represent protective functions are defined in the substation part of the document series.

Table 9 – Logical nodes for protections

LN Class	Description
PRTR	Rotor protection. Field short-circuit protection.

5.3.8 Group R – Protection related functions

Table 10 – Logical nodes for protection related functions

LN Class	Description
RFBC	Field breaker configuration.

iTeh STANDARD PREVIEW

5.3.9 Group S – Supervision and monitoring

(standards.iteh.ai)

Table 11 – Logical nodes for supervision and monitoring

LN Class	Description https://standards.iteb.ai/catalog/standards/sist/170897c9-eb9b-40aa-9224-
SFLW	Media flow supervision. This logical node represents a generic media flow supervision system that can provide alarm and trip signals. In an application, the LN shall be instantiated with one instance per flow being measured.
SLEV	Media level supervision. This logical node represents a generic level supervision system that can provide alarm and trip signals. In an application, the LN shall be instantiated with one instance per surface being measured.
SPOS	Device position supervision. This logical node represents a generic position supervision system that can provide alarm and trip signals. In an application, the LN shall be instantiated with one device being measured.
SPRS	Media pressure supervision. This logical node represents a generic pressure supervision system that can provide alarm and trip signals. In an application, the LN shall be instantiated with one instance per pressure point being measured.

5.3.10 Group X – Switchgear

Table 12 – Logical nodes for switchgear

LN Class	Description
XFFL	Field flashing. A logical node to represent the switching control for start excitation (field flashing) of a generator.

5.4 Automatic control logical nodes

LN group A

5.4.1 Modelling remarks

Logical nodes in this group are intended for automatic control functions of general use, i.e. not for any specific area of technology. The logical nodes APSS, APST and APSF below are intended for use in power system stabilizer (PSS) control functions used for large generators.