# INTERNATIONAL STANDARD 

ISO

First edition 1994-03-01

## Thermoplastics pipes - Determination of creep ratio

## iTelh STubes en matieres thermoplastiques Dedermination du taux de fuage (standards.iteh.ai)

ISO 9967:1994
https://standards.iteh.ai/catalog/standards/sist/6b4495c1-5b03-44c1-bd69-
d9a66ddd990e/iso-9967-1994

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least $75 \%$ of the member bodies casting VIEW a vote.

International Standard ISO 9967 was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Sub-Committee SC 1, Plastics pipes and fittings for soil, waste and drainage (including land drainage). ${ }^{\text {htpsils }}$ /tandards.iteh aut catalogstandards sist 6 b4495c1-5b03-44c1-bd69-
d9a66ddd990e/iso-9967-1994
Annexes $A$ and $B$ of this International Standard are for information only.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 - CH-1211 Genève 20 • Switzerland
Printed in Switzerland

## Introduction

Experience shows that, when a pipe is installed in the ground in accordance with an appropriate code of practice, its increase in deflection virtually stops after a short period. This period varies depending on the soil and installation conditions, but it does not exceed two years.

Therefore the two-year creep ratio as determined in accordance with this International Standard is intended for use when long-term static calculations are carried out.

The theory of creep in thermoplastics materials is briefly explained in annex $A$.

For experiments, the test can be carried out based on other ages of the iTel S Stestyieces, other test temperatures andyor other testing times. (standards.iteh.ai)

ISO 9967:1994
https://standards.iteh.ai/catalog/standards/sist/6b4495c1-5b03-44c1-bd69-
d9a66ddd990e/iso-9967-1994

# iTeh Sthis page inenentionaly lett blank VIIEW (standards.iteh.ai) 

ISO 9967:1994
https://standards.iteh.ai/catalog/standards/sist/6b4495c1-5b03-44c1-bd69-d9a66ddd990e/iso-9967-1994

## Thermoplastics pipes - Determination of creep ratio

## 1 Scope

This International Standard specifies a method of determining the creep ratio of thermoplastics pipes having a circular cross-section.

## 2 Symbols

The following symbols are used in this international 4.2 Two steel plates, through which the Standard:

## 4 Apparatus

4.1 Compressive-testing machine, capable of applying to the pipe via plates (4.2), and maintaining to within $1 \%$, both the applicable pre-load force $F_{0}$ (see 7.4) and the necessary loading force $F$ (see 7.5). compressive force can be applied to the test piece.
(standards. 11
Units The plates shall be flat, smooth and clean and shall not deform during the test to an extent that would affect the results.
$d_{n} \quad$ nominal diameter of pipe
mm9967:1994
$d_{i} \quad$ inside diameter of pipe test piece ${ }^{\text {teh ai/catalog/tandards/sist The length of each-plate shall be at least equal to the }}$ $F$ loading force d9a66ddkN
$F_{0}$ pre-load force N
$L$ length of test piece m
$y_{0}$ measured initial deflection m
$Y_{t} \quad$ calculated deflection at time $t \quad \mathrm{~m}$
$Y_{2}$ extrapolated two-year deflection m
$\delta$ vertical deflection used to determine the $m$ loading force
$\gamma \quad$ creep ratio

## 3 Principle

A cut length of pipe is placed between two parallel flat horizontal plates and a constant compressive force is applied for 1000 h (42 days).

The deflection of the pipe is recorded at specified intervals so as to prepare a plot of pipe deflection against time. The linearity of the data is analysed and the creep ratio is calculated.
length of the test piece. The width of each plate shall be not less than the maximum width of the surface in contact with the test piece while under load plus 25 mm .
4.3 Measuring devices, capable of determining

- the length of the test piece to within 1 mm (see 5.2);
- the inside diameter of the test piece to within 0,5 \%;
- the change in inside diameter of the test piece in the direction of loading with an accuracy of $0,1 \mathrm{~mm}$, or $1 \%$ of the deflection, whichever is the greater.

An example of a device for measuring the inside diameter of corrugated pipes is shown in figure 1.

### 4.4 Timer.



Figure 1 - Example of a device for measuring the inside diameter of a corrugated pipe

## 5 Test pieces

### 5.1 Marking and number of test pieces

The pipe for which the creep ratio is to be determined shall be marked on the outside along its full length with a line along one generatrix. Three test pieces, $\mathbf{a}$, $\mathbf{b}$ and $\mathbf{c}$, respectively, shall be taken from this marked pipe such that the ends of the test pieces are perpendicular to the pipe axis and their lengths conform to 5.2 .

## iTeh STANI

5.2.3 For pipes that have nominal diameters greater than 1500 mm , the average length, in millimetres, of each test piece shall be at least $0,2 d_{n}$.
5.2.4 Structured-wall pipes with perpendicular ribs or corrugations or other regular structures shall be cut such that each test piece contains the minimum whole number of ribs, corrugations or other structures necessary to satisfy the requirement on length given in 5.2.2 or 5.2.3, as applicable (see figure 2 ).

The cuts shall be made at the mid-point between the ribs, corrugations or other structures.

### 5.2 Length of test pieces

## (standardls.iteh.ai)

5.2.1 The length of each test pieced shall be detere mined by calculating the arithmetic mean of three tol six length measurements equally spaced around the perimeter of the pipe as given in table 1. The length of each test piece shall conform to $5.2 .2,5.2 .3,5.2 .4$ or 5.2 .5 , as applicable.

Each of the three to six length measurements shall be made to within 1 mm .

For each individual test piece, the smallest of the three to six length measurements shall not be less than 0,9 times the largest measurement.

Table 1 - Number of length measurements

| Nominal diameter $d_{\mathrm{n}}$ of <br> the pipe <br> mm | Number of length <br> measurements |
| :---: | :---: |
| $d_{\mathrm{n}} \leqslant 200$ | 3 |
| $200<d_{\mathrm{n}}<500$ | 4 |
| $d_{\mathrm{n}} \geqslant 500$ | 6 |

5.2.2 For pipes that have nominal diameters less than or equal to 1500 mm , the average length of each test piece shall be $300 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

e.g. $p=45 \mathrm{~mm}$

Figure 2 - Test piece cut out of a perpendicularly ribbed pipe
5.2.5 For helically wound pipes (see figure 3), the length of each test piece shall be such that it contains the minimum whole number of helical windings necessary to satisfy the requirement on length given in 5.2.2 or 5.2.3, as applicable.

For pipes with helical stiffeners in the form of ribs, corrugations, etc., the length of each test piece shall be such that it comprises a whole number of stiffeners, with a minimum of three, and shall conform to 5.2.2 or 5.2.3, as applicable.

e.9. $\mathrm{p}=65 \mathrm{~mm}$ (standards.

Figure 3 - Test piece cut out of a helically wound pipe
hitps:/standards. iteh.ai/catalogstandards/sist7.449 Eower the'upper plate until it touches the upper d9a66ddd990e/iso-99 part00f the test piece.

Apply one of the following pre-load forces $F_{0}$, as applicable, taking into account the mass of the upper plate:
a) for pipes with $d_{i}$ less than or equal to $0,1 \mathrm{~m}, F_{0}$ shall be $7,5 \mathrm{~N}$;
b) for pipes with $d_{\mathrm{i}}$ larger than $0,1 \mathrm{~m}$, calculate $F_{0}$ in newtons, using the following equation and rounding the result to the next highest whole number:

$$
F_{0}=75 d_{i}
$$

where $d_{i}$ is the numerical value of $d_{i}$ measured in metres.
7.5 Within 5 min of applying the pre-load force, set the deflection gauge to zero and start applying a steadily increasing compressive force such that, between 20 s and 30 s after starting, a loading force $F$ is reached. This force $F$ shall be chosen such that after $360 \mathrm{~s}(6 \mathrm{~min})$ the test piece shows a deflection ratio of $1,5 \% \pm 0,2 \%$, i.e.

$$
\frac{\delta}{d_{\mathrm{i}}}=0,015 \pm 0,002
$$

At the moment when this full loading force $F$ is reached, start the timer.
7.6 Determine the initial deflection $y_{0} 6 \mathrm{~min}$ after the application of the full load. Then determine the deflection $1 \mathrm{~h}, 4 \mathrm{~h}, 24 \mathrm{~h}, 168 \mathrm{~h}, 336 \mathrm{~h}, 504 \mathrm{~h}, 600 \mathrm{~h}$, $696 \mathrm{~h}, 840 \mathrm{~h}, 1008 \mathrm{~h}$ after application of the full load.

If the value of $y_{0}$ is outside the limits specified in 7.5 , interrupt the test, recondition the test piece for at least one hour and restart the test at 7.3 .

NOTE 2 A series of eleven deflection values is obtained for each test piece.

Where it is not possible to read the deflection gauges at the appropriate times between 500 h and 1008 h , if is permissible to deviate by $\pm 24 \mathrm{~h}$, providing the actual measurement time is used in preparing the plots described in clause 8 .

## EXAMPLE

Instead of taking the reading at 840 h , the deflection is read after 862 h . In this case the value of 862 h is used in the regression analysis.

NOTE 3 When the stiffness test is started on a Monday or Thursday, weekends do not interfere with the test.

## iTeh STANDA <br> 8 Determination of creep ratio

### 8.1 Calculation

For each of the three test pieces, pipt the deflection in metres against the logarithm of time in hours ond semi-logarithmic coordinate system (see figure 4) and determine by linear regression the equation of the straight line

$$
Y_{t}=B+M \lg t
$$

through all eleven points, through the last ten points, through the last nine points, ..., and through the last five points (see table 2), where the constants $B$ and $M$ and the correlation coefficient $R$ are determined using the following equations (i.e. using the method of least squares):

$$
\begin{aligned}
& M=\frac{N \sum x_{i} y_{i}-\sum y_{i} \sum x_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& B=\frac{\sum y_{i}-M \sum x_{i}}{N} \\
& R=\left[\frac{M\left(N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}\right)}{N \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}}\right]^{1 / 2}
\end{aligned}
$$

$B$ being the theoretical deflection, in millimetres, at $t=1 \mathrm{~h}$,
$M$ being the gradient,
$N$ being the number of points on the deflection curve used for the linearregression analysis,
$R \quad$ being the correlation coefficient (if $R$ has a value between 0,99 and 1,00 , it is assumed that the plotted points lie on a straight line),
$t_{i}$ being the time at the $i$ th point, given by the equation

$$
x_{i}=\lg t_{i}
$$

$y_{i}$ being the measured total deflection at time $t_{i}$.

For each of the seven equations $Y_{t}=B+M \lg t$ obtained for a given test piece, calculate the extrapolated two-year deflection $Y_{2}$, in millimetres ( $t=2$ years $=17520 \mathrm{~h}$ ) (see table 2 ) .

Choose as the value for the two-year deflection $Y_{2}$ (for calculation of the creep/ratio of the test piece) the highest calculated value of $Y_{2}$ that has a correlation
Coefficient $R$ ? 0 0,999 or that has the highest value of $R$ between 0,990 and 0,999.
ISO 9967:1994
If the highest value of $R$ is less than 0,990 , see 8.2.
Having determined $Y_{2}$, calculate the creep ratio for each of the three test pieces using the following equations:

$$
\begin{aligned}
\gamma_{a}= & \frac{Y_{2 \mathrm{a}}\left(0,0186+0,025 \frac{y_{0 \mathrm{a}}}{d_{\mathrm{i}}}\right)}{y_{0 \mathrm{a}}\left(0,0186+0,025 \frac{Y_{2 \mathrm{a}}}{d_{\mathrm{i}}}\right)} \\
\gamma_{\mathrm{b}}= & \frac{Y_{2 \mathrm{~b}}\left(0,0186+0,025 \frac{y_{0 \mathrm{~b}}}{d_{\mathrm{i}}}\right)}{y_{0 \mathrm{~b}}\left(0,0186+0,025 \frac{Y_{2 \mathrm{~b}}}{d_{\mathrm{i}}}\right)} \\
\gamma_{\mathrm{c}}= & \frac{Y_{2 \mathrm{c}}\left(0,0186+0,025 \frac{y_{0 \mathrm{c}}}{d_{\mathrm{i}}}\right)}{y_{0 c}\left(0,0186+0,025 \frac{Y_{2 \mathrm{c}}}{d_{\mathrm{i}}}\right)}
\end{aligned}
$$

Report the creep ratio of the pipe as the arithmetic mean of the three values obtained above, calculated using the following equation:

$$
\gamma=\frac{\gamma_{a}+\gamma_{b}+\gamma_{c}}{3}
$$

### 8.2 Example of a creep calculation

A typical set of deflection/time data for one test piece is given in table 2 together with the subsequently calculated values of $M, B, R$ and $Y_{2}$ for different ranges of points as given in column four which indicates
which points have been included in the regression analysis.

The resulting plot is given in figure 4 where, in accordance with clause 8, $Y_{2}$ is based on the set of not less than five points for which $R$ has the highest value above 0,990.

Table 2 - Typical set of deflection/time data for one test piece

| Point <br> number | Time <br> $t$ <br> $h$ | $Y_{t}$ <br> $m m$ | Range <br> of <br> points | $M$ | $B$ | $R$ | $Y_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0,1 | 6,529 | 1 to 11 | 0,505 | 6,683 | 0,950 | 8,830 |
| 2 | 1 | 6,649 | 2 to 11 | 0,612 | 6,424 | 0,967 | 9,023 |
| 3 | 4 | 6,780 | 3 to 11 | 0,710 | 6,170 | 0,972 | 9,185 |
| 4 | 24 | 7,019 | 4 to 11 | 0,888 | 5,695 | 0,982 | 9,463 |
| 5 | 168 | 7,534 | 5 to 11 | 1,196 | 4,842 | 0,996 | 9,921 |
| 6 | 336 | 7,849 | 6 to 11 | 1,311 | 4,517 | 0,996 | 10,081 |
| 7 | 504 | 8,049 | 7 to 11 | 1,422 | 4,195 | 0,998 | 10,232 |
| 8 | 600 | 8,134 |  |  |  |  |  |
| 9 | 696 | 8,234 |  |  |  |  |  |
| 10 | 864 | 8,384 |  |  |  |  |  |
| 11 | 1,008 | 8,464 |  |  | DRP |  |  |

(standards.iteh.ai)
ISO 9967:1994
https://standards.iteh.ai/catalog/standards/sist/6b4495c1-5b03-44c1-bd69-


Figure 4 - Deflection/time plot for one test piece

