INTERNATIONAL STANDARD

NORME INTERNATIONALE

Radiotherapy equipment SCoordinates, movements and scáles Appareils utilisés en radiothérapie - Coordonnées, mouvements et échelles

IEC 61217:2011
https://standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-
779d05c55351/iec-61217-2011

this Publication is copyright protected

Copyright © 2011 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office

3 , rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawnand replaced pablications. (1)

- IEC Just Published: www.iec.ch/online news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

IEC 61217:2011

- Electropedia: www.electropedia!orgds.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-

The world's leading online dictionary of electronjc and electrical terms containing more than 20000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

- Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 229190211
Fax: +41229190300

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

- Catalogue des publications de la CEI: www.iec.ch/searchpub/cur fut-f.htm

Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.

- Just Published CEI: www.iec.ch/online news/justpub

Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email.

- Electropedia: www.electropedia.org

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne.

- Service Clients: www.iec.ch/webstore/custserv/custserv entry-f.htm

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +412291902 11
Fax: +41 229190300

INTERNATIONAL STANDARD

NORME

 INTERNATIONALE
Radiotherapy equipment SCoordinates, movements and scales
 Appareils utilisés en radiothérapie - Coordonnees, mouvements et échelles

IEC 61217:2011
https://standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-
779d05c55351/iec-61217-2011

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE PRICE CODE

CONTENTS

FOREWORD 6
INTRODUCTION 8
1 Scope and object. 10
2 Normative references 10
3 Coordinate systems 10
3.1 General 10
3.2 General rules 11
3.3 Fixed reference system ("f") (Figure 1a) 12
3.4 GANTRY coordinate system ("g") (Figure 4) 12
3.5 BEAM LIMITING DEVICE or DELINEATOR coordinate system ("b") (Figure 5) 13
3.6 WEDGE FILTER coordinate system ("w") (Figure 7) 13
3.7 X-RAY IMAGE RECEPTOR coordinate system ("r") (Figures 6 and 8) 14
3.8 PATIENT SUPPORT coordinate system ("s") (Figure 9) 14
3.9 Table top eccentric rotation coordinate system ("e") (Figures 10 and 11) 15
3.10 Table top coordinate system ("t") (Figures 10, 11, 18 and 19) 15
3.11 PATIENT coordinate system ("p") (Figures 17a and 17b) 16
3.12 Imager coordinate system ("i") and focus coordinate system ("o") 17
 17
3.12.2 The imager coordinate system ("i") 17
3.12.3 Focus coordinatésystem?("oi") S.il.teh..2.1.) 18
4 Identification of scales and digital DISPLAYS 18
5 Designation of ME EQUIPMENT movements 19
6 ME EQUIPMENT zero positions....779. $105 \mathrm{e} 55351 / \mathrm{icc}-612.17 .2011$ 19
7 List of scales, graduations, directions and DISPLAYS 20
7.1 General 20
7.2 Rotation of the GANTRY (Figures 14a and 14b) 20
7.3 Rotation of the BEAM LIMITING DEVICE or DELINEATOR (Figures 15a and 15b) 20
7.4 Rotation of the WEDGE FILTER (Figures 7 and 14a) 20
7.5 RADIATION FIELD or DELINEATED RADIATION FIELD 21
7.5.1 General 21
7.5.2 Edges of RADIATION FIELD or DELINEATED RADIATION FIELD (Figure 16a) 21
7.5.3 DISPLAY of RADIATION FIELD or DELINEATED RADIATION FIELD (Figures 16a to 16k) 22
7.6 PATIENT SUPPORT isocentric rotation 23
7.7 Table top eccentric rotation 23
7.8 Table top linear and angular movements 24
7.8.1 Vertical displacement of the table top 24
7.8.2 Longitudinal displacement of the table top 24
7.8.3 Lateral displacement of the table top 24
7.8.4 Pitch of the table top 24
7.8.5 Roll of the table top 24
7.9 X-RAY IMAGE RECEPTOR movements 24
7.9.1 X-RAY IMAGE RECEPTOR rotation 24
7.9.2 X-RAY IMAGE RECEPTOR radial displacement from RADIATION SOURCE (SID) 25
7.9.3 X-RAY IMAGE RECEPTOR radial displacement from ISOCENTRE 25
7.9.4 X-RAY IMAGE RECEPTOR longitudinal displacement 25
7.9.5 X-RAY IMAGE RECEPTOR lateral displacement 25
7.10 Other scales 25
Annex A (informative) Examples of coordinate transformations between individual coordinate systems 57
Annex B (informative) Coordinate transformations between IEC and DICOM PATIENT coordinates 64
Bibliography 65
Index of defined terms 66
Figure 1a - Coordinate systems for an isocentric RADIOTHERAPY EQUIPMENT (see 3.1) with all angular positions set to zero 27
Figure 1b - Translation of origin Id along Xm, Ym, Zm and rotation around axis Zd parallel to Zm (see 3.2d)) 28
Figure 1c - Translation of origin Id along Xm, Ym, Zm and rotation around axis Yd parallel to Ym (see 3.2d)) 28
Figure 2 - X Y Z right-hand coordinate mother system (isometric drawing) showing ψ, φ, θ directions of positive rotation for daughter system (see 3.2a)) 29
Figure 3 - Hierarchical structure among coordinate systems (see 3.2c) and 3.2e)) 30
Figure 4 - Rotation ($\varphi \mathrm{g}=15^{\circ}$) of GANTRY coordinate system $\mathrm{Xg}, \mathrm{Yg}, \mathrm{Zg}$ in fixed coordinate system Xf, Yf, Zf (see 3.4) 31
Figure 5 - Rotation $\left(\theta \mathrm{b}=15^{\circ}\right.$) of BEAM LIMITING DEVICEOO DELINEATOR coordinate system $\mathrm{Xb}, \mathrm{Yb}, \mathrm{Zb}$ in GANTRY coordinate system $\mathrm{Xg}, \mathrm{Yg}, \mathrm{Zg}$, and resultant rotation of RADIATION FIELD or DELINEATED RADIATION FIELD of dimensions FX and FY (see 3.5) 32
Figure 6 - Displacement of image intensifier type X-RAY IMAGERECEPTOR coordinate system origin, Ir , in GANTRY coordinate system, by $R \mathrm{x}=-8, R y=+10, R z=-40$ (see 3.7) 33
Figure 7 - Rotation ($\theta \mathrm{w}=270^{\circ}$) and translation of WEDGE FILTER coordinate system Xw, Yw, Zw in BEAM LIMITING DEVICE coordinate system Xb, Yb, Zb, the BEAM LIMITING DEVICE coordinate system having a rotation $\theta b=345^{\circ}$ (see 3.6) 34
Figure 8 - Rotation ($\theta \mathrm{r}=90^{\circ}$) and displacement of X-RAYIMAGE RECEPTOR coordinate system Xr, Yr, Zr in Gantry coordinate system Xg, Yg, Zg (see 3.7) 35
Figure 9 - Rotation ($\theta \mathrm{s}=345^{\circ}$) of PATIENT SUPPORT coordinate system Xs, Ys, Zs in fixed coordinate system Xf, Yf, Zf (see 3.8) 36
Figure 10 - Table top eccentric coordinate system rotation θ e in PATIENT SUPPORT coordinate system which has been rotated by θ s in the fixed coordinate system with $\theta \mathrm{e}=360^{\circ}-\theta$ s (see 3.9 and 3.10) 37
Figure 11a - Table top displaced below ISOCENTRE by Tz = -20 cm (see 3.9 and 3.10) 37
Figure 11b - Table top coordinate system displacement Tx = +5, Ty = Le + 10 in PATIENT SUPPORT coordinate system Xs, Ys, Zs rotation ($\theta \mathrm{s}=330^{\circ}$) in fixed coordinate system Xf, Yf, Zf (see 3.9 and 3.10) 38
Figure 11c - Table top coordinate system rotation ($\theta \mathrm{e}=30^{\circ}$) about table top eccentric system. PATIENT SUPPORT rotation ($\theta \mathrm{s}=330^{\circ}$) in fixed coordinate system $\mathrm{Tx}=0, \mathrm{Ty}=$ Le (see 3.9 and 3.10) 38
Figure 12a - Example of BEAM LIMITING DEVICE scale, pointer on mother system (GANTRY), scale on daughter system (BEAM LIMITING DEVICE), viewed from ISOCENTRE (see 3.2f)2) and Clause 4) 39
Figure 12b - Example of BEAM LIMITING DEVICE scale, pointer on daughter system (BEAM LIMITING DEVICE), scale on mother system (GANTRY), viewed from ISOCENTRE (see 3.2f)2) and Clause 4) 40
Figure 12c - Examples of scales (see Clause 4) 40
Figure 13a - Rotary GANTRY (adapted from IEC 60601-2-1) with identification of axes 1 to 8 , directions 9 to 13, and dimensions 14 and 15 (see Clause 5) 41
Figure 13b - ISOCENTRIC RADIOTHERAPY SIMULATOR or TELERADIOTHERAPY EQUIPMENT, with identification of axes $1 ; 4$ to $6 ; 19$, of directions 9 to $12 ; 16$ to 18 and of dimensions 14; 15 (see Clause 5) 42
Figure 13c - View from radiation source of teleradiotherapy radiation field or radio- therapy simulator delineated radiation field (see Clause 5) 43
Figure 14a - Example of ISOCENTRIC TELERADIOTHERAPY EQUIPMENT (see 7.2 and 7.4) 44
Figure 14b - Example of ISOCENTRIC RADIOTHERAPY SIMULATOR equipment (see 7.2) 45
Figure 15 a - Rotated $\left(\theta \mathrm{b}=30^{\circ}\right.$) symmetrical rectangular RADIATION FIELD ($\mathrm{FX} \times \mathrm{FY}$) at NORMAL TREATMENT DISTANCE, viewed from ISOCENTRE looking toward RADIATION SOURCE (see 7.3) 46
Figure 15 b - Same rotated $\left(\theta b=30^{\circ}\right)$ symmetrical rectangular RADIATION FIELD (FX \times FY) at NORMAL TREATMENT DISTANCE, viewed from RADIATION SOURCE (see 7.3) 46
Figure 16a - Rectangular and symmetrical RADIATION FIELD or DELINEATED RADIATION FIELD, viewed from RADIATION SOURCE (see 7.5) 47
Figure 16b - Rectangular and asymmetrical in Yb RADIATION FIELD or DELINEATED RADIATION FIELD, viewed from RADIATION SOURCE (see 7.5) 47
Figure 16c - Rectangular and asymmetrical in Xb RADIATION FIELD or DELINEATED RADIATION FIELD, viewed from RADIATION SOURCE (see 7.5) 48
Figure 16d - Rectangular and asymmetrical in Xb and Yb RADIATION FIELD or DELINEATED RADIATION FIELD, viewed from RADIATION SOURCE (see 7.5) 48
Figure $16 \mathrm{e}-$ Rectangular and symmetrical RADIATION FIELD, rotated by $\theta \mathrm{b}=30^{\circ}$ viewed from Radiation source (see 7.5)......6.1.1.7.0.0.1. 49
Figure 16 f - Rectangulartand asymmetricap in Yb RADATIONFIEED, rotated by $\theta b=30^{\circ}$, viewed from RADIATION SOURCE (see 7.5) 49
Figure 16 g - Rectangular and asymmetrical in Xb RADIATION FIELD, rotated by $\theta \mathrm{b}=30^{\circ}$, viewed from Radiation source (see 7.5) 50
Figure 16h - Rectangular and asymmetrical in Xb and Yb RADIATION FIELD, rotated by $\theta b=30^{\circ}$, viewed from RADIATION SOURCE (see 7.5) 51
Figure 16i - Irregular multi-element (multileaf) contiguous RADIATION FIELD, viewed from RADIATION SOURCE, with element motion in Xb direction (see 7.5) 52
Figure 16j - Irregular multi-element (multileaf) two-part RADIATION FIELD, viewed from RADIATION SOURCE, with element motion in Xb direction (see 7.5) 53
Figure 16k - Irregular multi-element (multileaf) contiguous RADIATION FIELD, viewed from RADIATION SOURCE, with element motion in Yb direction (see 7.5) 54
Figure 17a - PATIENT coordinate system (PATIENT is supine) 55
Figure 17b - Rotation of PATIENT coordinate system 55
Figure 18 - Table top pitch rotation of table top coordinate system Xt, Yt, Zt (see 3.10 and 7.8.4) 56
Figure 19 - Table top roll rotation of table top coordinate system $\mathrm{Xt}, \mathrm{Yt}, \mathrm{Zt}$ (see 3.10 . and 7.8.5) 56
Figure B. 1 - Coordinate transformations between IEC and DICOM PATIENT coordinates 64
Table 1 - ME EQUIPMENT movements and designations 19
Table 2 - Individual coordinate systems 26
Table A. 1 - Rotation matrices 58

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RADIOTHERAPY EQUIPMENT COORDINATES, MOVEMENTS AND SCALES

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International standard IEC 61217 has been prepared by subcommittee 62C: Equipment for radiotherapy, nuclear medicine and radiation dosimetry, of IEC technical committee 62: Electrical equipment in medical practice.

This second edition cancels and replaces the first edition, published in 1996, amendment 1, published in 2000 and amendment 2, published in 2007. This edition constitutes a technical revision to include imager and focus coordinate systems in Subclause 3.12. Beyond this Subclause, changes were only introduced where needed to include the above coordinate systems.

The text of this particular standard is based on the following documents:

FDIS	Report on voting
62C/530/FDIS	$62 \mathrm{C} / 539 /$ RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

In this standard, the following print types are used:

- Requirements and definitions: roman type.
- Test specifications: italic type.
- Informative material appearing outside of tables, such as notes, examples and references: in smaller type. Normative text of tables is also in a smaller type.
- TERMS USED THROUGHOUT THIS STANDARD THAT HAVE BEEN LISTED IN THE INDEX OF DEFINED TERMS: SMALL CAPITALS.

The verbal forms used in this standard conform to usage described in Annex H of the ISO/IEC Directives, Part 2. For the purposes of this standard, the auxiliary verb:

- "shall" means that compliance with a requirement or a test is mandatory for compliance with this standard;
- "should" means that compliance with a requirement or a test is recommended but is not mandatory for compliance with this standard;
- "may" is used to describe a permissible way to achieve compliance with a requirement or test.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be W

- reconfirmed,
- withdrawn,
(standards.iteh.ai)
- replaced by a revised edition, or
- amended. https///standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-779d05c55351/iec-61217-2011

INTRODUCTION

RADIOTHERAPY is performed in medical centres where a variety of ME EQUIPMENT from different MANUFACTURERS is usually concentrated in the RADIOTHERAPY department. In order to plan and simulate the TREATMENT, set up the PATIENT and direct the RADIATION BEAM, such ME EQUIPMENT can be put in different angular and linear positions and, in the case of MOVING BEAM RADIOTHERAPY, can be rotated and translated during the IRRADIATION of the PATIENT. It is essential that the position of the PATIENT, and the dimensions, directions, and qualities of the RADIATION BEAM prescribed in the treatment plan, be set up or varied by programmes on the radiotherapy EQUIPMENT with accuracy and without misunderstanding. Standard identification and scaling of coordinates is required for ME used in RADIOTHERAPY, including RADIOTHERAPY SIMULATORS and ME EQUIPMENT used to take images during or in connection with RADIOTHERAPY, because differences in the marking and scaling of similar movements on the various types of ME EQUIPMENT used in the same department may increase the probability of error. In addition, data from ME EQUIPMENT used to evaluate the tumour region, such as ultrasound, X-ray, CT and MRI should be presented to the treatment planning system in a form which is consistent with the RADIOTHERAPY coordinate system. Coordinate systems for individual geometrical parameters are required in order to facilitate the mathematical transformation of points and vectors from one coordinate system to another.

A goal of this standard is to avoid ambiguity, confusion, and errors which could be caused when using different types of ME EQUIPMENT. Hence, its scope applies to all types of TELERADIOTHERAPY ME EQUIPMENT, RADIOTHERAPY SIMULATORS, information from diagnostic ME EQUIPMENT when used for RADIOTHERAPY, recording and verification equipment, and to data input for the treatment PLANNING process. ARD PREVIHW

Movement nomenclature is classified as defined terms according to IEC/TR 60788:2004 as well as terms defined in IEC 60601-2-1 and IEC 60601-2-29 (see index of defined terms).

IEC 61217:2011
This standard is issued as a publication separate from the IEC 60601 series of safety standards. It is not a safety code and does not contaim performance requirements. Thus, the present requirements will not appear in future editions of the IEC 60601-2 series, which deals exclusively with safety requirements.

IEC 60601-2-1, IEC 60601-2-11, IEC 60601-2-29, IEC 60976, IEC 60977, IEC 61168 and IEC 61170 include ME EQUIPMENT movements and scale conventions. A number of changes and additions have been made in this standard.

A major value of a standard coordinate system is its contribution to safety in RADIOTHERAPY TREATMENT PLANNING. The scales that are demonstrated in this standard are consistent with the coordinate systems described herein. USERS may use other scale conventions. It is anticipated that MANUFACTURERS will normally employ the scale conventions of this standard for new ME EQUIPMENT.

It is anticipated that future amendments may address the following:

- three-dimensional RADIOTHERAPY SIMULATORS;
- CT type RADIOTHERAPY SIMULATORS.

Amendment 2, published in 2007, had extended the rotation of the PATIENT support devices around the Z-axis in the IEC fixed coordinate system to two additional rotations - rolling around the PATIENT'S longitudinal axis and pitching around the patient's transversal axis.

The use of the two new additional degrees of freedom (pitch and roll) generalizes the coordinate systems to include systematically 3 rotations and 3 translations, therefore supporting 6 degrees of freedom in a systematic way. Modern patient support devices with 6 degrees of freedom can use a combined translation and rotation to get the same result as the eccentric table top rotation. When changing table position data using the new IEC systems,
the definition of isocentric rotations is sufficient to transfer all treatment-related information. The eccentric table top coordinate system is however maintained for backward compatibility.

NOTE It is quite common in proton therapy to use a treatment chair, where the PATIENT can be rotated and tilted, while the beam line has a fixed direction.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61217:2011
https://standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-
779d05c55351/iec-61217-2011

RADIOTHERAPY EQUIPMENT COORDINATES, MOVEMENTS AND SCALES

1 Scope and object

This International Standard applies to equipment and data related to the process of TELERADIOTHERAPY, including PATIENT image data used in relation with RADIOTHERAPY TREATMENT PLANNING SYSTEMS, RADIOTHERAPY SIMULATORS, isocentric GAMMA BEAM THERAPY EQUIPMENT, isocentric medical ELECTRON ACCELERATORS, and non-isocentric equipment when relevant.

The object of this standard is to define a consistent set of coordinate systems for use throughout the process of TELERADIOTHERAPY, to define the marking of scales (where provided), to define the movements of ME EQUIPMENT used in this process, and to facilitate computer control when used.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
(standards.iteh.ai)
IEC 60601-1:2005, Medical electrical equipment - Part 1: General requirements for basic safety and essential performance

IEC 61217:2011

IEC 60601-1-3:2008, Medical electrical equipment Part 1-3: General requirements for basic safety and essential performance - Collateral Standard: Radiation protection in diagnostic X ray equipment

IEC 60601-2-1:2009, Medical electrical equipment - Part 2-1: Particular requirements for the basic safety and essential performance of electron accelerators in the range 1 MeV to 50 MeV

IEC 60601-2-11:1997, Medical electrical equipment - Part 2: Particular requirements for the safety of gamma beam therapy equipment

IEC 60601-2-29:2008, Medical electrical equipment - Part 2-29: Particular requirements for the basic safety and essential performance of radiotherapy simulators

IEC 60788:2004, Medical electrical equipment - Glossary of defined terms

IEC 62083:2009, Medical electrical equipment - Requirements for the safety of radiotherapy treatment planning systems

3 Coordinate systems

3.1 General

An individual coordinate system is assigned to each major part of the ME EQUIPMENT which can potentially be moved in relation to another part, as illustrated in Figure 1a and summarized in Table 1. Furthermore a fixed reference system is defined. Each major part (e.g. GANTRY, RADIATION HEAD) is always stationary with respect to its own coordinate system.

Perspective views of an ISOCENTRIC medical ELECTRON ACCELERATOR and a RADIOTHERAPY SIMULATOR are shown in Figures 1a, 14a and 14b. Isometric projection drawings of coordinate systems are shown in several Figures 1a, 14a and 14b. In the figures, an elliptic (isometric projection) arrow around an axis of a coordinate system always shows clockwise rotation of that coordinate system about that axis when viewed from its origin and in the positive direction.

NOTE In the following description of individual coordinate systems, counter-clockwise (ccw) rotations are sometimes described in which the axis of rotation is not viewed from the origin of the individual coordinate system.

The definitions of coordinate systems, as stated in the following subclauses, allow mathematical transformations (rotation and/or translation) of the coordinates from one system to any other coordinate system. See Annex A for examples of coordinate transformations.

3.2 General rules

Following requirements apply:
a) All coordinate systems are Cartesian right-handed. The positive parameter directions of linear and angular movements between systems are identified in Figure 2. With all coordinate system angles set to zero, all coordinate system Z axes are vertically upward.
b) Coordinate axes are identified by a capital letter followed by a lower-case letter, representing coordinate system identification.
c) Coordinate systems have a hierarchical structure (mother-daughter relation) in the sense that each system is derived from another system. The common mother system is the fixed reference system. Figure 3 and Table 2 show the hierarchical structure which is divided into two sub-hierarchical structures, one in relation to the GANTRY, the second in relation to the PATIENT SUPPORT.
d) The position and orientation of each daughter coordinate system (d) is derived from its mother coordinate system (m) by translation of its origin ld along one, two or three axes of its mother system and then by rotation of the daughter system about one of the daughter translated system axes.

NOTE 1 The mechanical motions of parts of the ME EQUIPMENT may follow a different sequence, as long as the me Equipment ends up in the same position and orientation as it would have done if the indicated sequence had been followed.

Figures 1b and 1c show examples of translation of the daughter system origin Id along the mother system coordinate axes Xm, Ym, Zm.

Figure 1b shows translation of origin Id along $\mathrm{Xm}, \mathrm{Ym}, \mathrm{Zm}$ and rotation about axis Zd which is parallel to Zm .

Figure 1c shows translation of origin Id along $\mathrm{Xm}, \mathrm{Ym}, \mathrm{Zm}$ and rotation about axis Yd which is parallel to Ym .

EXAMPLE The beam limiting device coordinate system is derived from the gantry system and the latter from the fixed system. Thus, a rotation of the GANTRY system causes an analogous rotation of the coordinate axes of the beam limiting device coordinate system in the fixed system and the origin of the beam limiting DEVICE system (position of the RADIATION SOURCE) is displaced in the fixed system (in space).
e) A point defined in one system can be defined in the coordinates of the next higher system (its mother) or the next lower system (its daughter) by applying a coordinate transformation, see Figure 3 and Annex A. Thus, it is possible to calculate, for a point defined in the BEAM LIMITING DEVICE system, its coordinates in the table top system by application of successive coordinate transformations (rotations and translations of the origin, as defined in 3.2d)), going first from the BEAM LIMITING DEVICE system upwards to the fixed system (i.e. BEAM LIMITING DEVICE system to GANTRY system to fixed system) and from this downwards to the table top system (i.e. fixed system to PATIENT SUPPORT system to table top eccentric rotation system, if available, to table top system). Such a coordinate transformation may considerably facilitate the solution of complex geometrical problems
encountered in treatment planning, as well as minimize errors in the positioning of ME EQUIPMENT.

f) Notations

1) Capital letters are used for coordinate axis identification and lower-case letters are used for coordinate system identification.

EXAMPLE \quad Yg means y axis of the GANTRY system.
2) The rotation of one coordinate system with respect to its mother system about one particular axis of its own system is designated by the rotation angle which identifies the axis about which it rotates (ψ about X, φ about Y , and θ about Z), and by a lowercase letter identifying the system involved.

EXAMPLE $\quad \theta b=30^{\circ}$ means rotation of the " b " system with respect to the " g " system by an angle of 30° (clockwise as viewed from ISOCENTRE) around axis Zb of the " b " system (see Figures 12a, 12b and also Figure 5, where $\theta b=15^{\circ}$).
3) The linear position of the origin of a coordinate system within its mother system is designated by capital letters identifying the daughter coordinate system and by the designation of the coordinate axis of the mother system along which it is translated.

EXAMPLE $\quad R y=$ (numerical value) means position of the origin of the X-RAY IMAGE RECEPTOR coordinate system along coordinate axis Yg (of its mother system).
4) For a movable component part which does not have its own coordinate system, its position within the system in which it moves is designated by a capital letter identifying the device in movement and a lower-case letter identifying the coordinate axis of the coordinate system along which it moves. C .INW
EXAMPLE X1 [Xb] = (numerical value) means position of RADIATION FIELD Or DELINEATED RADIATION FIELD edge X 1 along axis Xb of the BEAM GMITING DEVICE system.

NOTE 2 When a component part position can be displaced along only one coordinate axis, then the designation of this coordinate axis can be omitted. Thus, for the above example, $\mathrm{X} 1=$ (numerical value) is sufficient. https://standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-
5) The position of a point withinacoordinate system is given by the numerical values of its coordinates in that system.

EXAMPLE Coordinate values of a point in the X-RAY IMAGE RECEPTOR system
$\mathrm{xr}=+20 \mathrm{~cm}$
$\mathrm{yr}=-10 \mathrm{~cm}$
$\mathrm{zr}=0 \mathrm{~cm}$
g) For rotational transformations involving more than one rotation the sequence of the rotations must be kept consistent. If the rotational sequence varies, the resulting transformation matrix and the orientation of the axes will be different.

The sequence in which the rotations shall be applied is the sequence in which these rotations are described in Clause 3 of this standard.

NOTE $3 \quad M_{\mathrm{ab}}{ }^{-1}=M_{\mathrm{ba}}($ see A.1 $)$.

3.3 Fixed reference system ("f") (Figure 1a)

The fixed coordinate system "f" is stationary in space. It is defined by a horizontal coordinate axis Yf directed from the ISOCENTRE toward the GANTRY, by a coordinate axis Zf directed vertically upward and by a coordinate axis Xf, normal to Yf and Zf and directed to the viewer's right when facing the GANTRY. For ISOCENTRIC EQUIPMENT the origin If is the ISOCENTRE Io and, therefore, Yf is the rotation axis of the GANTRY.

3.4 GANTRY coordinate system ("g") (Figure 4)

The " g " coordinate system is stationary with respect to the GANTRY and its mother system is the " f " system. Its origin Ig is the ISOCENTRE. Its coordinate axis Zg passes through and is directed towards the RADIATION SOURCE. Coordinate axes Yg and Yf coincide.

The " g " system is in the zero angular position when it coincides with the "f" system.

The rotation of the " g " system is defined by the rotation of coordinate axes Xg, Zg by an angle φg about axis Yg (therefore about Yf of the " f " system).

An increase in the value of φg corresponds to a clockwise rotation of the GANTRY as viewed along the horizontal axis Yf from the ISOCENTRE towards the GANTRY.

3.5 BEAM LIMITING DEVICE or DELINEATOR coordinate system ("b") (Figure 5)

The "b" coordinate system is stationary with respect to the BEAM LIMITING DEVICE or DELINEATOR system and its mother system is the " g " system. Its origin lb is the RADIATION sOURCE. Its coordinate axis Zb coincides with and points in the same direction as axis Zg . The coordinate axes Xb and Yb are perpendicular to the corresponding edges $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1$ and Y 2 of the RADIATION FIELD or DELINEATED RADIATION FIELD (see 7.5).

NOTE The positions of the RADIATION FIELD edges are defined by the coordinate system. The coordinate system is
not defined by the RADIATION FIELD edges.
For ME EQUIPMENT which allows varying the distance from the ISOCENTRE to the RADIATION SOURCE (e.g. some RADIOTHERAPY SIMULATORS), this SAD-movement corresponds to a linear displacement of the " b " coordinate system along the Zg axis of its mother system (" g " system).

The "b" system is in the zerb angular position when the coordinate axes Xb, Yb are parallel to and in the same directions as the corresponding axes Xg, Yg.
(standards.itel.ail)

The rotation of the " b " system is defined by the rotation of the coordinate axes Xb, Yb about axis Zb (therefore about axis Zg of the " g "system) by an angle θ b.
https://standards.iteh.ai/catalog/standards/sist/fc619fdb-79dd-41db-8b95-
An increase in the value of angle θ bdcorresponds 1 to thel clockwise rotation of the RADIATION FIELD or DELINEATED RADIATION FIELD as viewed from the ISOCENTRE towards the RADIATION source (see Figures 15a, 15b).

3.6 WEDGE FILTER coordinate system ("w") (Figure 7)

The " w " coordinate system is stationary with respect to the WEDGE FILTER and its mother system is the "b" system. Its origin, Iw, is a defined point such that the coordinate axis Yw is directed towards the thin edge of the WEDGE FILTER and in its zero position axis Zw passes through the RADIATION SOURCE, coincides with axis Zb and points in the same direction as Zb .

NOTE 1 The MANUFACTURER or USER may choose the location of Iw to suit the design of the WEDGE FILTER DEVICE. For example it is possible to define Iw as the point of intersection of axis Zw with a particular surface of the WEDGE FILTER.

In the zero angular position of the " w " system $(\theta w=0)$ and of the " b " system $(\theta b=0)$ the thin edge of the WEDGE FILTER (end, along Yw, with highest transmission) is toward the GANTRY and the coordinate axes Xw, Yw are parallel to the corresponding axes Xb, Yb.

The rotation of the " w " system is defined by the rotation of coordinate axes Xw , Yw about axis Zw (parallel to axis Zb of the "b" system) by an angle $\theta \mathrm{w}$.

An increase in the value of angle θw corresponds to the counter-clockwise rotation of the WEDGE FILTER about Zw (parallel to axis Zb) as viewed from the RADIATION SOURCE.

At the zero angular position of the "w", "b" and "g" coordinate systems, a positive longitudinal displacement of the origin Iw corresponds to the movement of the WEDGE FILTER thin edge toward the GANTRY, along Yb and a positive lateral displacement corresponds to the movement along Xb to the viewer's right when facing the GANTRY.

