INTERNATIONAL STANDARD

ISO 9978

First edition 1992-02-15

Radiation protection — Sealed radioactive sources — Leakage test methods

iTeh Stadioprotection Sources radioactives scellées – Méthodes d'essai d'étanchéité (standards.iteh.ai)

ISO 9978:1992 https://standards.iteh.ai/catalog/standards/sist/f3c6b4c1-a313-4b04-bed6e9ad4e4a39ca/iso-9978-1992

Reference number ISO 9978:1992(E)

Contents

1	Scope	1
2	Normative reference	1
3	Definitions	1
4	Requirements	2
5	Test methods by radioactive means	4
6	Test methods by non-radioactive means	5

Annexes

Α	Guidance for the control and seale	choice of the tests ed source type	s to be	carried	out ac	cording	to 8
в	Bibliography						10

iTeh STANDARD PREVIEW (standards.iteh.ai)

Page

ISO 9978:1992 https://standards.iteh.ai/catalog/standards/sist/f3c6b4c1-a313-4b04-bed6e9ad4e4a39ca/iso-9978-1992

© ISO 1992

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an Inter-Teh S national Standard requires approval by at least 75% of the member bodies casting a vote.

Sinternational Standard ISO 9978 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Sub-Committee SC 2, Radiation protection.

Annex A forms an integral part of this International Standard. Annex B https://standards.itelia.fortahformation/sonfigc6b4c1-a313-4b04-bed6e9ad4e4a39ca/iso-9978-1992

Introduction

The use of sealed radioactive sources has become so widespread that standards to guide the user, manufacturer and regulatory agency are necessary. When establishing these standards, radiation protection is the prime consideration.

Leakage test methods for sealed radioactive sources were published in ISO/TR 4826¹⁾ and the experience acquired since this date has permitted the elaboration of this International Standard.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9978:1992 https://standards.iteh.ai/catalog/standards/sist/f3c6b4c1-a313-4b04-bed6e9ad4e4a39ca/iso-9978-1992

¹⁾ ISO/TR 4826:1979, Sealed radioactive sources - Leak test methods

Radiation protection — Sealed radioactive sources — Leakage test methods

1 Scope

This International Standard specifies the different leakage test methods for sealed radioactive sources. It gives a comprehensive set of procedures using radioactive and non-radioactive means.

This International Standard applies to the following controls:

aged to investigate the possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 2919:1980, Sealed radioactive sources – Classification.

iTeh STANDARD³P RefinitionsW

- quality control allowing validation of required tests for determining the classification of radio of radio
- production control of sealed radioactive sources our and the sources of the sou
- periodic inspections of the sealed radioactive sources performed at regular intervals, during the working life.

Annex A of this International Standard gives recommendations to guide the user in his choice of the most suitable method(s) according to control and source type.

It is recognized that there may be special circumstances where special tests, not described in this International Standard, may be required.

It is emphasized, however, that insofar as production, use, storage and transport of sealed radioactive sources are concerned, compliance with this International Standard is no substitute for complying with the requirements of the relevant IAEA regulations and other relevant national regulations.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this International Standard are encourand/or associated with a material to which it is closely bonded. This (these) capsule(s) and/or material shall be strong enough to maintain leak tightness of the sealed source under the conditions of use and wear for which it was designed.

NOTE 1 In the text of this International Standard, the term "sealed source" is used instead of "sealed radioactive source" for brevity.

3.2 leaktight: Term applied to sealed sources which, after undergoing leakage testing, meet the limiting values given in table 1.

3.3 capsule: Protective envelope, usually made of metal, used to prevent leakage of radioactive material.

3.4 dummy sealed source: Facsimile of a sealed source, the capsule of which has the same construction and is made with exactly the same materials as those of the sealed source that it represents but containing, in place of the radioactive material, a substance resembling it as closely as possible in physical and chemical properties.

3.5 simulated sealed source: Facsimile of a sealed source, the capsule of which has the same construction and is made with exactly the same materials as those of the sealed source that it

represents. However it contains, in place of the radioactive material, a substance resembling it as closely as possible in physical and chemical properties and only radioactive material of tracer quantity.

NOTE 2 The tracer shall be in a form soluble in a solvent which does not attack the capsule and has the maximum activity compatible with its use in a containment enclosure.

3.6 model designation: Descriptive term or reference number to identify a specific sealed source design.

3.7 prototype sealed source: Original of a sealed source which serves as a pattern for the manufacture of all sealed sources identified by the same model designation.

3.8 quality control: Controls on a prototype sealed source which are necessary to establish the compliance of the sealed sources with ISO 2919, including the determination of the classification.

3.9 production control: Performance testing of a also to new sealed source before sealed sources of the D Acheck same model designation are put into actual manufacture and use.

3.10 recurrent inspections: Particular controls performed at regular intervals in order to establish ISO 90table 1. (both during storage and use) the leak tightness to be stablish is 100 90table 1. the sealed source.

3.11 leakage: Transfer of radioactive material from the sealed source to the environment.

3.12 non-leachable: Term used to convey that the radioactive material in the form contained in the sealed source is virtually insoluble in water and is not convertible into dispersible products (see ISO 2919).

3.13 standard helium leakage rate: Helium leakage rate at an upstream pressure of 10^5 Pa $\pm 5 \times 10^3$ Pa and a downstream pressure of 10^3 Pa or less at a temperature of 296 K \pm 7 K (23 °C \pm 7 °C); in this International Standard the unit micro pascal cubic meter per second is used, taking into account the

range of limiting values $1 \mu Pa \cdot m^3 \cdot s^{-1} = 10^{-6} Pa \cdot m^3 \cdot s^{-1} \approx 10^{-5} atm \cdot cm^3 \cdot s^{-1} \approx 7.5 \times 10^{-3}$ lusec.

4 Requirements

The tests described in this International Standard shall be carried out by competent and qualified persons who have had appropriate training in radiation protection.

According to the control type and the sealed source type, at least one of the tests described in clauses 5 and 6 should be carried out [see annex A for the choice of the test(s)].

However, in the case where a special test, which is not described in this International Standard, is carried out (see clause 1), the user should be able to demonstrate that the applied method is at least as effective as the corresponding method(s) given in this International Standard.

It should be noted that it is often normal practice to carry out more than one type of leakage test and also to perform a final wipe test as a contamination **CREC PREVIEW**

At the conclusion of the performed test(s), the seated source shall be considered to be leaktight if it complies with the limiting values specified in

levels of measurement of the different methods, the results will depend upon measurement equipment and procedures.

A leakage rate of $10 \ \mu Pa \cdot m^3 \cdot s^{-1}$ for non-leachable solid contents and a rate of $0,1 \ \mu Pa \cdot m^3 \cdot s^{-1}$ for leachable solids, liquids and gases would, in most cases, be considered to be equivalent to the activity release limit of 2 kBq (≈ 50 nCi) according to [12].

A further confirmation of the volumetric acceptance threshold is given by [2]. A leakage rate of 10^{-7} atm·cm^{3·s-1} or less based on dry air at 298 K (25 °C) and for a pressure difference of 1 atm against a vacuum of 10^{-2} atm or less is considered to represent a loss of leaktightness, irrespective of the physical nature of the content.

	Sub-clause	Threshold	Limiting value		
Test method		detection value	Non-leachable content	Leachable or gaseous content	
		Activity, Bq	kBq		
Immersion test (hot liquid)	5.1.1	10 to 1	0,2	0,2	
Immersion test (boiling liquid)	5.1.2	10 to 1	0,2	0,2	
Immersion test with a liquid scintillator	5.1.3	10 to 1	0,2	0,2	
Gaseous emanation test	5.2.1	4 to 0,4	1)	0,2 (²²² Rn/12 h)	
Emanation test with a liquid scintillator	5.2.2	0,4 to 0,004	_1)	0,2 (²²² Rn/12 h)	
Wet wipe test	5.3.1	10 to 1	0,2	0,2	
Dry wipe test	5.3.2	10 to 1	0,2	0,2	
iTeh	STANI	Standard helium leakage rate, μPa·m ³ ·s ⁻¹			
Helium test	(stand	ards.iteh.ai	1	10-2	
Helium pressurization test	6.1.2	1 to 10 ⁻²	1	10-2	
Vacuum bubble test	6.2.1 s.iteh.ai/catalog/	<u>0 9978:1992</u> standards/sist/f3c6b4c1-	a313-4b04-bed6-	3)	
Hot-liquid bubble test	6 c2:2 d4c4a	139ca/iso-99278-1992	1	3)	
Gas pressurization bubble test	6.2.3	12)	1	3)	
Liquid nitrogen bubble test	6.2.4	10-2 2)	1	10-2	
			Mass gain of water, μg		
Water pressurization test	6.3	10	50	3)	
1) Unsuitable.					

Table 1 — Threshold detection values and limiting values for different test methods

2) These detection limits are applicable only to single leaks under favourable visual conditions.

3) Not sensitive enough.

Prior to any testing, except in the case of recurrent inspections, the sealed source shall be thoroughly cleaned and shall undergo a thorough visual examination.

All equipment used for tests shall be suitably maintained and calibrated periodically.

Where applicable, the following parameters should be specified, whenever possible:

- pressure,
- temperature,

proportionality factor between the volume of the sealed source and the volume of the test enclosure used for certain tests, as well as the volume of liquid used to cover the sealed source to be tested.

The wipe test should not be considered as a leakage test, except for some specific types of sources (e.g. sources with thin windows), for recurrent inspections and in cases where no other test is more suitable.

Wipe tests or liquid immersion test samples should, wherever possible, be checked immediately on basic contamination measuring equipment; for example, a Geiger counter to establish whether there is any gross contamination prior to final measurement on more sophisticated calibrated equipment.

5 Test methods by radioactive means

5.1 Immersion tests

5.1.1 Immersion test (hot liquid)

Immerse the sealed source in a liquid which does not attack the material of the outer surfaces of this source and which, under the conditions of this test, is considered effective for removal of all traces of radioactive materials present. Examples of such liquids include distilled water and weak detergent solutions or chelation agents and also slightly alkaline or acid solutions with concentrations of about 5 %. Heat the liquid to $323 \text{ K} \pm 5 \text{ K}$ (50 °C ± 5 °C) and maintain it at that temperature for at least 4 h. Remove the sealed source and measure the activity of the liquid.

NOTE 3 An ultrasonic cleaning method can also be used. In this case, the immersion time in the liquid at $343 \text{ K} \pm 5 \text{ K}$ (70 °C ± 5 °C) can be reduced to approximately 30 min.

5.1.2 Immersion test (boiling liquid)

Immerse the sealed source in a liquid which does sealed source in a liquid which does sealed source and which, under the conditions of this test, is considered effective for removal of all traces of radioactive materials present. Boil for 10 min, allow to cool, then rinse the sealed source in a fresh batch of liquid. Repeat these operations twice, re-immersing the source in the original liquid. Remove the sealed source and measure the activity of the liquid.

5.1.3 Immersion test with a liquid scintillator

Immerse the sealed source for at least 3 h at room temperature in a liquid scintillator solution which does not attack the material of the outer surface of the source. Store away from light to avoid photoluminiscence. Remove the sealed source and measure the activity of the liquid by a liquid scintillation counting technique.

5.1.4 Immersion test at room temperature²⁾

Immerse the sealed source in a liquid which does not attack the material of the outer surfaces of this source and which, under the conditions of this test, is considered effective for removal of all traces of radioactive materials present.

Immerse the sealed source in a liquid at room temperature 293 K \pm 5 K (20 °C \pm 5 °C) and maintain it at this temperature for 24 h. Remove the sealed source and measure the activity of the liquid.

5.1.5 Approval criteria

The sealed source is considered to be leaktight if the activity detected does not exceed 0,2 kBq (\approx 5 nCi).

5.2 Gaseous emanation tests

5.2.1 Gaseous emanation test by absorption (for radium-226 sealed sources)

Place the sealed source in a small gas-tight container with a suitable absorbent, for example activated carbon, cotton or polyethylene, and leave it for at least 3 h. Remove the source and close the container. Immediately measure the activity of the absorbent.

o ^{approxi-} 5,2.2. Gaseous emanation test by immersion with a (standar liquid scintillator (for radium-226 sealed sources)

ISO 9581992 the procedure described in 5.1.3.

itch ai/catalog/standards/sist/f3c6b4c1-a313-4b04-bed6nich does 5.2.397Gaseous emanation test (for krypton-85 ces of the sealed sources)

> Maintain the sealed source under reduced pressure for 24 h. Analyse the content of the chamber for krypton-85 by a plastic scintillation counting technique. Repeat the test after at least 7 days.

5.2.4 Other gaseous emanation tests

Any other test methods which are equivalent to those described in 5.2.1 to 5.2.3 may be used.

5.2.5 Approval criteria

When the tests described in 5.2.1 and 5.2.2 are completed, the sealed source is considered to be leaktight if the activity detected does not exceed 0,2 kBq (\approx 5nCi) of radon for a collection time of 12 h. When the test period is shorter than 12 h, appropriate corrections shall be made.

When the tests described in 5.2.3 and 5.2.4 are completed, the sealed source is considered to be leaktight if the activity detected does not exceed 4 kBq/24 h (\approx 100 nCi/24 h).

²⁾ This test may be useful where hot liquid tests are not practical, however the latter are recommended whenever possible since their use has been widely recognized for many years and also because they may be more effective.

5.3 Wipe tests

If a wipe test is used to determine leak tightness after mechanical or thermal prototype testing, the sealed sources to be tested shall be cleaned (decontaminated) prior to the tests.

When the wipe test is a means of leakage testing carried out at the manufacturing stage, the sealed source shall be cleaned prior to the test and a 7-day waiting period shall be observed before the test.

In the case of the wipe test methods, it is necessary to take into account the technique used, the instrumentation and the pressure applied, because the method used may not give sufficiently accurate reproducibility guarantees.

5.3.1 Wet wipe test

Wipe all the external surfaces of the sealed source thoroughly with a swab of filter paper or another suitable highly absorbant material, moistened with a liquid which will not attack the material of which the external surfaces of the sealed source are made and which, under the conditions of this test, has been demonstrated to be effective in removing any radioactive material present. Measure the activity of the swab. The data given in this International Standard for the relationship between volumetric leakage rates and ioss of radioactive material are based on values published in IAEA documents and, although they have not been confirmed absolutely by experimental work, volumetric leakage test methods have been used for many years and experience shows that they can be accepted as valid test methods.

Before conducting any of the tests described in 6.1 to 6.3, the sealed source should be thoroughly cleaned and dried.

For sealed sources with leachable or gaseous content, the helium test described in 6.1 can be used.

Ensure that there are no gross defects which might invalidate the results of the described test, for example by visual inspection or by a method less sensitive than that of the described test. For these tests to be valid, except that described in 6.3, the free volume inside the sealed source shall be greater than 0.1 cm^3 . If this test is used for sealed sources with a free volume of less than 0.1 cm^3 , the user shall be able to demonstrate the validity of the test^[9].

rated to be effective in removing any Because of their lower detection limit, only those aterial present Measure the activity R tests using helium (6.1) are applicable to sealed sources with leachable or gaseous contents.

5.3.2 Dry wipe test

6.1 Helium mass spectrometer leakage tests ISO 9978:1992

This test can be used in situations where it may not ard/sis 6.1.16b4Helium test-bed6be appropriate to use a wet swab, for example for arbor a

To carry out the test, thoroughly rub all the external surfaces of the sealed source with a dry swab of filter paper and measure the activity of the swab.

5.3.3 Approval criteria

If the activity detected does not exceed 0,2 kBq (\approx 5nCi), the sealed source is considered to be leaktight.

NOTE 4 The important points concerning the use of wipe tests on accessible surfaces which are as close as possible to the sealed source and the need to consider radiation protection are noted [see clause 3, item b)].

6 Test methods by non-radioactive means

When non-radioactive procedures are used, a relationship between volumetric leakage rate and loss of radioactive material should be established. In practice, it is difficult to do this because of the wide range of forms of radioactive material used in sealed sources and also the different types of leaks. Place the sealed source containing helium in a suitable vacuum chamber, which is subsequently evacuated through a helium mass spectrometer. Evaluate the actual helium leakage rate in accordance with the recommendations of the manufacturer of the leakage test equipment.

Ensure that the free volume inside the sealed source contains a concentration of commercial grade helium of more than 5 %. The indicated helium leakage rate according to the previous evaluation divided by the concentration of helium in the free volume gives the actual standard helium leakage rate.

6.1.2 Helium pressurization test

Place the sealed source in a pressure chamber. Using helium, purge the chamber of air. Pressurize the chamber to a given helium pressure and maintain it for a given period. Depressurize the chamber, clean the sealed source by flushing it with dry nitrogen or rinsing it in a volatile fluorocarbon liquid, and transfer it to a suitable vacuum chamber. Measure the helium leakage rate as described in 6.1.1.