INTERNATIONAL STANDARD

Metallic powders - Determination of envelope-specific surface area from measurements of the permeability to air of a iTelh S powder bed under steady-state flow conditions (standardls.iteh.ai)

Poudres métalliques -- Détermination de la surface spécifique d'enveloppe à artiry de mesures de la perméabilité à l'air d'un lit de https://standards.ipoudre dans dess conditions d'écoulement permanent

Reference number

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member
bodies casting a vote.
International Standard ISO 10070 was preparedby technicalcommitteei) ISO/TC 119, Powder metallurgy.

Annexes A and B of this International Standard are for information only
nttpsy/standards.tteh.aicatalog/standards/sist/a0ibsaja-e506-4af0-ac09-db495d6a95f4/iso-10070-1991

[^0]
Introduction

The measurement of the permeability of a packed powder bed to a laminar gas flow is the basis of this International Standard. The determination can be made either at constant pressure drop (steady-state flow) or at variable pressure drop (constant volume).

The permeability measured is influenced by the porosity of the bed. For a given particle shape, the values of permeability and porosity can be used to calculate a specific surface area of the powder by means of equations of different types.

The surface area so calculated includes only those walls of the pores in the bed which are swept by the gas flow. It does not take into account closed or blind pores. It is defined as the envelope-specific surface area. It may be very different from the total surface area of particles as measured, for instance, by gas adsorption methods.

A single equation is used in the standard methods described and this entails certain limitations with respect to the type of powder (particle shape) and the porosity of the powder bed for which the method is ap-
https.//standards.itplicablegConsequently this is notlanabsolute method, and the value obtained dependsoupon the procedure used and the assumptions made.

The specific surface area determined can be converted into a mean equivalent spherical diameter (see definitions, clause 3).

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank
ISO 10070:199
https://standards.iteh.ai/catalog/standards/sist/4a0fb5aa-e506-4af0-ac09-db495d6a95f4/iso-10070-1991

Metallic powders - Determination of envelope-specific surface area from measurements of the permeability to air of a powder bed under steady-state flow conditions

1 Scope

1.1 This International Standard specifies a method of measuring the air permeability and the porosity of a packed bed of metal powder, and of deriving therefrom the value of the envelope-specific surface area. The permeability is determined under steadystate flow conditions, using a laminar flow of air at a pressure near atmospheric. This International 70:199 Standard does not includesthemeasurement of perdards/sistf the powder-contains agglomerates, the measured meability by a constant volume methoddb495d6a95f4/iso-100

Several different methods have been proposed for this determination, and several instruments are available commercially. They give similar, reproducible results, provided the general instructions given in this International Standard are respected and the test parameters are identical.

This International Standard does not specify a particular commercial apparatus and corresponding test procedure. However, for the convenience of the user, an informative annex has been included (annex A) which is intended to give some practical information on three specific methods:

- the Lea and Nurse method, involving an apparatus which can be built in a laboratory (see A.1);
- the Zhang Ruifu method, using similar equipment (see A.2);
- the Gooden and Smith method, involving an apparatus which can be built in a laboratory but for which a commercial apparatus also exists (see A.3).

These methods are given as examples only. Other equipment available in various countries is acceptable within the scope of this International Standard.
1.2 This method is applicable to all metallic powders, including powders for hardmetals, up to $1000 \mu \mathrm{~m}$ in diameter, but it is generally used for particles having diameters between $0,2 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$. It should not be used for powders composed of particles whose shape is far from equiaxial, i.e. flakes or fibres, unless specifically agreed upon between the parties concerned.

This method is not applicable to mixtures of different metalic powders or powders containing binders or lubricant. surface area may be affected by the degree of agglomeration. If the powder is subjected to a deagglomeration treatment (see annex B), the method used shall be agreed upon between the parties concerned.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 3252:1982, Powder metallurgy - Vocabulary.
ISO 3954:1977, Powders for powder metallurgical purposes - Sampling.

ISO 4022:1987, Permeable sintered metal materials -- Determination of fluid permeability.

3 Definitions

For the purposes of this International Standard, the following definitions apply.
3.1 permeability: Ability of a porous material to allow a fluid to flow through it.

NOTE 1 In this standard, the fluid used is dry air.
3.2 interstices: Spaces between particles in a powder bed, through which the air flows.
3.3 permeable porosity: Volume of interstices divided by the volume of the bed.
3.4 envelope volume: Volume occupied by the particles in a powder bed, excluding the volume of the interstices. In permeametry, the envelope volume comprises the volume of the solid matter plus the volume of all the pores which do not contribute to gas flow (closed pores, blind pores, micropores, surface micropores, surface roughness, etc.). Since this volume cannot be measured by any known method, it is taken, for the purposes of this later-
national Standard, as being equal to the effective volume, as determined by liquid pyknometry.
3.5 envelope density: Mass of a powder bed divided by its envelope volume. The envelope density may be less than the solid density when particles contain pores that do not contribute to the gas flow through the bed.
3.6 mass-specific surface area: The surface area of a powder divided by its mass. This area depends on the type of method used for its determination.
3.7 envelope-specific surface area: The specific surface area of a powder as determined by gas permeametry in accordance with this International Standard.
3.8 volume-specific surface area: The surface area of a powder divided by its effective volume (i.e. by its envelope volume).
3.9 equivalent sphere diameter: Diameter of theoretical non-porous spherical particles of identical size, with which the same method of permeametry as that used for the powder under examination Δ would give thersāne volūne-specific surface area.
(standards.iteh.ai)
ISO 10070:1991
https://standards.iteh.ai/catalog/standards/sist/4a0fb5aa-e506-4af0-ac09-db495d6a95f4/iso-10070-1991

4 Symbols and their meanings

Table 1 - Symbols used in the text

5 General principles

5.1 Basically, permeametry is the experimental determination of the permeability Φ of a powder bed, the porosity of which is known.

The permeability is determined by measuring the volume flow rate q and the drop in pressure Δp of a dry gas (generally air) continuously traversing the bed under laminar flow conditions.

The permeability coefficient is then calculated from Darcy's law:

$$
\begin{equation*}
\Phi=\frac{q \eta L}{A \Delta p} \tag{1}
\end{equation*}
$$

5.2 The Carman-Arnell equation relates specific surface area to the porosity and permeability of a packed bed of powder, and takes into account both the viscous flow and the slip flow. This equation can be written:

$$
\begin{align*}
\Phi=\frac{\varepsilon_{\mathrm{p}}}{K_{\eta}} & {\left[\frac{\varepsilon_{\mathrm{p}}^{2}}{S_{V}^{2}\left(1-\varepsilon_{\mathrm{p}}\right)^{2}}+\frac{8}{3} \cdot \sqrt{\frac{2 R T}{\pi M}}\right.} \\
& \left.\times \frac{\delta k_{\mathrm{o}} \eta \varepsilon_{\mathrm{p}}}{p S_{V}\left(1-\varepsilon_{\mathrm{p}}\right)}\right]
\end{align*}
$$ httts:///standards.iteh ai/catalo The solution of equation (2), which is quadratic in S_{V}, can be simplified by calculating the value of two terms, the Kozeny term S_{K} and the slip flow term S_{m}, and then combining them to give S_{V}.

The Kozeny term S_{K} is given by the equation

$$
\begin{equation*}
S_{K}=\sqrt{\frac{A \Delta p \varepsilon_{\mathrm{p}}^{3}}{K\left(1-\varepsilon_{\mathrm{p}}\right)^{2} L \eta q}} \tag{3}
\end{equation*}
$$

This term is identical to the Kozeny-Carman equation for S_{V} and gives the contribution to the surface area of the powder due to streamline flow.

The slip flow term S_{m} is given by the equation

$$
\begin{equation*}
S_{\mathrm{m}}=\frac{A \Delta p}{K L q} \times \frac{8}{3} \sqrt{\frac{2 R T}{\pi M}} \times \frac{\delta k_{\mathrm{o}} \varepsilon_{\mathrm{p}}^{2}}{p\left(1-\varepsilon_{\mathrm{p}}\right)} \tag{4}
\end{equation*}
$$

or, in the case of air,

$$
\begin{equation*}
S_{\mathrm{m}}=81 S_{K}^{2} \frac{\left(1-\varepsilon_{\mathrm{p}}\right) \eta}{p \varepsilon_{\mathrm{p}}} \sqrt{T} \tag{5}
\end{equation*}
$$

S_{V} is then given by

$$
\begin{equation*}
S_{V}=\frac{S_{\mathrm{m}}}{2}+\sqrt{\frac{S_{\mathrm{m}}^{2}}{4}+S_{K}^{2}} \tag{6}
\end{equation*}
$$

and the mass-specific surface area S_{w} by

$$
\begin{equation*}
S_{\mathrm{w}}=\frac{S_{V}}{\varrho_{\mathrm{e}}} \tag{7}
\end{equation*}
$$

The equivalent sphere diameter D is given by

$$
\begin{equation*}
D=\frac{6}{S_{V}}=\frac{6}{\varrho_{\mathrm{e}} S_{\mathrm{w}}} \tag{8}
\end{equation*}
$$

The Carman-Arnell equation (2) shall be used when the volume-specific surface area is greater than $10^{6} \mathrm{~m}^{-1}$ (mean particle size less than $6 \mu \mathrm{~m}$), because the slip flow component of the permeability becomes significant in addition to the viscous flow term.

For coarser powders, the Kozeny-Carman equation (3) may be used by agreement between the parties concerned; the error introduced by neglecting slip flow is about 10% at a mean particle size of $6 \mu \mathrm{~m}$ and increases as the powder becomes finer.

The mass-specific surface area S_{w} is given by the equation

$$
\begin{equation*}
S_{\mathrm{w}}=\sqrt{\frac{\varepsilon_{\mathrm{p}}^{3} A \Delta p}{5,0\left(1-\varepsilon_{\mathrm{p}}\right)^{2} q \eta L \varrho_{\mathrm{e}}^{2}}} \tag{9}
\end{equation*}
$$

5.3 The methods and instruments used in practice differ depending on the way in which the volume flow rate of the gas and the pressure drop are measured. Annex A describes three methods by
SO 100 way of example: the Lea and Nurse method, the dZhang/Ruifuamethodfland the Gooden and Smith (method)- 1991
5.4 The Kozeny-Carman relation applies only over a limited range of bed porosities, the range depending on the type of powder. It applies best to equiaxial powders. The Kozeny factor K varies with the particle shape and particle size distribution. In this International Standard, the value of K is taken to be 5,0 but other values may be used by agreement between the parties concerned.
5.5 Due to the limitations noted in 5.4, the variation of the specific surface area as a function of porosity shall first be determined experimentally for any particular type of powder.

For example, make several successive determinations of the permeability, using test portions of the same mass from the same laboratory sample, and packing the powder bed to give a decreasing series of porosities. Over a certain range of porosities, the specific surface area will be practically constant. Only determinations made within this range shall be taken as valid.
5.6 In the above equations, the permeable porosity ε_{p} of the powder bed and the envelope density ϱ_{e} of the particles are used. They are related by the equation

$$
\begin{equation*}
\varepsilon_{\mathrm{p}}=1-\frac{m}{A L \varrho_{\mathrm{e}}} \tag{10}
\end{equation*}
$$

The envelope density ϱ_{e} is equal to the solid density only for smooth, non-porous particles. In such cases, $\varepsilon_{\mathrm{p}}=\varepsilon$.

In all other cases, the envelope density ϱ_{e} shall be measured by an appropriate pyknometric method. The solid density value ϱ, or another density, may be adopted instead of the envelope density by agreement between the parties concerned.

6 Procedure

6.1 Preparation of test portion

Sampling shall have been carried out in accordance with ISO 3954. The test portion shall be taken from the test sample in the as-delivered state. Drying, in an appropriate atmosphere, or de-agglomeration (see annex B), is only permitted by agreement between the parties concerned.

6.3 Determination

Measure the thickness of the bed to within 0,25 \%. The temperature during the test shall not vary by more than $\pm 3^{\circ} \mathrm{C}$ from the temperature at which the apparatus was calibrated.

Pass a constant flow of gas through the powder bed. When the gas flow has stabilized, measure the flow rate and pressure drop. The pressure drop shall be small compared with atmospheric pressure (less than about $4000 \mathrm{~N} / \mathrm{m}^{2}$), so that the effect of the compressibility of the gas is negligible (see annex A, clause A.2, for a case in which the compressibility effect is taken into account and corrected for).

If necessary, a blank test shall be carried out to correct for the effect of the paper disc.

7 Expression of results

The specific surface area of the powder is calculated either by using equations (3), (5) and (6), or from equation (9).
The result shall be expressed in terms of one or more of the following quantities, using the units indicated:)

6.2 Preparation of packed powder bed

ISO 10070:199「 mass-specific surface area S_{w}, in square metres per kilogramor square metres per gram;
The thickness L of the hed shalldbe not less than 50 times the mean particle diameter, and sthe bed diameter shall be not less than 100 times the mean particle diameter.

NOTE 2 At the surface of a test bed, discontinuities occur due to wall and end effects. These effects are negligible (producing an error of less than 2% in the permeability), provided that the diameter and thickness of the test bed are as specified above.

The test portion is held in the cell by means of a porous paper disc at each end, and supported by a rigid perforated plate.

Introduce the test portion into the measuring cell in one pour, gently tapping the side of the cell to settle the powder. Pack the bed, covered with a porous paper disc, using a piston with grooves or holes to facilitate the expulsion of gas from the powder during the packing operation. Packing is achieved by applying a force slowly on the piston, up to a value which will give a porosity in the desired range and/or uniform packing of the bed.

NOTE 3 If there is evidence that the porosity of the packed bed is not homogeneous, then incremental pouring and packing is recommended.

Extract the piston using a rotary motion to minimize disturbance of the powder bed.

- volume-specific surface area S_{V}, in square metres per cubic metre or square centimetres per cubic centimetre;
- equivalent sphere diameter D from equation (8), in metres or micrometres.

8 Test report

The test report shall include the following information:
a) a reference to this International Standard;
b) all details necessary for complete identification of the sample;
c) the method and apparatus used;
d) any drying or de-agglomeration procedure used;
e) the density adopted (see 5.6);
f) the permeable porosity ε_{p} of the bed;
g) the equation used for the calculation of the specific surface area;
h) the value of the Kozeny-Carman factor if not taken as equal to 5,0 (see 5.4);
i) the result obtained;
j) details of any incident which may have affected the test result;
k) any operation not specified in this International Standard or regarded as optional.

iTeh STANDARD PREVIEW (standards.iteh.ai)

httpss//standards.iteh.ai/catalog/standards/sist/4a0fb5aa-e506-4af0-ac09-db495d6a95f4/iso-10070-1991

Annex A

(informative)

Examples of methods of determining the permeability to air of a powder bed

A. 1 Lea and Nurse method (see figure A.1)

In this method, a steady-state flow of dry air is fed first through the powder bed and then through the fixed capillary resistance of a flowmeter open to the atmosphere. The pressure drop Δp across the bed is measured by means of a manometer (reading h_{1}) and the flow rate q by means of the capillary flowmeter (reading h_{2}). The relationship between the flow rate q and the flowmeter reading h_{2} can be established by a suitable calibration method.

Thus the Lea and Nurse method is an absolute one, as all the quantities in equation (A.1) below are either known or measured:

$$
S_{\mathrm{w}}^{2}=\frac{\varepsilon_{\mathrm{p}}^{3} C_{1} h_{1} A}{5,0\left(1-\varepsilon_{\mathrm{p}}\right)^{2} C_{2} h_{2} \eta L \varrho_{\mathrm{e}}^{2}}
$$

where
https://standards. iteh ai/catalog/standards/s
C_{1} is the calibration factor lb 4 §on6acthe/iso- 10 manometer ($\Delta p=C_{1} h_{1}$);
C_{2} is the calibration factor for the capillary flowmeter ($q=C_{2} h_{2}$);
the other symbols are as defined in table 1.

In order to increase the accuracy of the permeability determination, it is recommended that the flow rate be adjusted to give three different values of h_{2} and three corresponding manometer readings h_{1}. The mean of the three values of the ratio h_{1} / h_{2} is used in equation (A.1).

NOTES

4 In order to test for bed uniformity, the determination is repeated with different amounts of powder packed to the same porosity or under the same packing force. If the bed is uniform, the results will be the same.

5 When testing a new type of powder, it recommended that its specific surface area be determined for a series
of bed porosities. The porosity range for these determinations is defined by the porosity range over which the specific surface area does not vary appreciably. In general, the bed porosity should be between 0,45 and 0,7 .

6 A linear relationship between flow rate and pressure drop indicates non-turbulent flow, permitting the use of the Carman-Arnell equation (2) or the Kozeny-Carman equation (9)

7 It is recommended that certified reference powders be used periodically to check the accuracy and the correct functioning of the instrument.

A. 2 Zhang Ruifu method

A.2.1 This method uses an apparatus similar in principle to that described for the Lea and Nurse method, but the pressure drop Δp across the powder bed can be up to $20000 \mathrm{~N} / \mathrm{mm}^{2}$. Moreover, a single determination by this method of the apparent equivalent diameter D_{K} for a known value of ε_{p}, permits the directmeasurement of various types of specific syrfage and diameter.

In order to allow for the air compressibility effect, the basic Carman-Arnell equation (2) in 5.2 is written:

$$
\Phi=\frac{\varepsilon_{\mathrm{p}}}{K}\left[\frac{\varepsilon_{\mathrm{p}}^{2}}{S_{V}^{2}\left(1-\varepsilon_{\mathrm{p}}\right)^{2}}+\frac{\varepsilon_{\mathrm{p}}}{S_{V}\left(1-\varepsilon_{\mathrm{p}}\right)} \times Z \lambda\right]
$$

where, for air at ordinary temperature,
7 is the slip flow factor (taken as being equal to 3,4)
$\lambda \quad$ is the mean free path, expressed at the mean pressure p in the powder bed, i.e.

$$
\lambda=0,097 \times 10^{6} \times \frac{p_{\mathrm{n}}}{p}
$$

where p_{n} is the standard atmospheric pressure ($101300 \mathrm{~N} / \mathrm{m}^{2}$).

[^0]: C) ISO 1991

 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale 56 • $\mathrm{CH}-1211$ Genève 20 • Switzerland
 Printed in Switzerland

