NOTICE: This standard has either been superseded and replaced by a new version or discontinued. Contact ASTM International (www.astm.org) for the latest information.

AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM An American National Standard

Standard Test Method for Measuring the Dynamic Mechanical Properties of Plastics in Torsion¹

This standard is issued under the fixed designation D 5279; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope *

1.1 This test method covers the use of dynamic mechanical instrumentation² for gathering and reporting the viscoelastic properties of thermoplastic and thermosetting resins and composite systems in the form of rectangular specimens molded directly or cut from sheets, plates, or molded shapes. The torsional data generated may be used to identify the thermomechanical properties of a plastics material or composition.

1.2 This test method is intended to provide means for determining the modulus as a function of temperature of plastics using nonresonant forced-vibration techniques, as outlined in Practice D 4065. Plots of the elastic (storage), loss (viscous), and complex moduli and tan delta, as a function of frequency, time, or temperature are indicative of significant transitions in the thermomechanical performance of the polymeric material system.

1.3 This test method is valid for a wide range of frequencies, typically from 0.01 to 100 Hz.

1.4 Apparent discrepancies may arise in results obtained under differing experimental conditions. These apparent differences from results observed in another study can usually be reconciled without changing the observed data by reporting in full (as described in this test method) the conditions under which the data were obtained.

1.5 Test data obtained by this test method are relevant and appropriate for use in engineering design.

1.6 The values stated in SI units are to be regarded as standard.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Note 1-There is no similar or equivalent ISO standard.

2. Referenced Documents

2.1 ASTM Standards:

- D 618 Practice for Conditioning Plastics and Electrical Insulating Materials for Testing²
- D 4065 Practice for Determining and Reporting Dynamic Mechanical Properties of Plastics³
- D 4092 Terminology Relating to Dynamic Mechanical Measurements of Plastics³

3. Terminology

3.1 For definitions applicable to this test method, refer to Terminology D 4092.

4. Summary of Test Method ⁴

4.1 This test method covers the determination of the shear modulus of plastics using dynamic mechanical techniques. A test specimen of rectangular cross section is tested in dynamic torsion. The specimen is gripped longitudinally between two clamps. The specimen of known geometry is placed in mechanical torsional displacement at either a fixed frequency, or variable frequencies at either isothermal conditions, or with a linear temperature increase. The elastic or loss modulus, or both, of the polymeric material system are measured in torsion.

5. Significance and Use

5.1 This test method provides a simple means of characterizing the thermomechanical behavior of plastics materials using very small amounts of material. The data obtained may be used for quality control, research and development, and establishment of optimum processing conditions.

5.2 Dynamic mechanical testing provides a sensitive method for determining thermomechanical characteristics by measuring the elastic and loss moduli as a function of frequency, temperature, or time. Plots of moduli and tan delta of a material versus temperature provide graphical representations indicative of functional properties, effectiveness of cure (thermosetting resin system), and damping behavior under specified conditions.

5.3 This test method can be used to assess

5.3.1 The modulus as a function of temperature,

5.3.2 The modulus as a function of frequency,

5.3.3 The effects of processing treatment, including orientation,

*A Summary of Changes section appears at the end of this standard.

¹ This test method is under the jurisdiction of ASTM Committee D-20 on Plastics and is the direct responsibility of Subcommittee D20.10 on Mechanical Properties. Current edition approved March 10, 1999. Published June 1999. Originally

published as D 5279-92. Last previous edition D 5279-95. ² Dynamic mechanical instrumentation is available from Rheometrics, Inc.,

Piscataway, New Jersey 08854.

³ Annual Book of ASTM Standards, Vol 08.02.

⁴ The particular method for measurement of the elastic and loss moduli and tan delta depends upon the individual instrument's operating principles.