INTERNATIONAL **STANDARD**

First edition 1993-07-01

Glass and glassware — Analysis of extract solutions —

Part 3: iTeh Determination of calcium oxide and magnesium oxide by flame atomic absorption spectrometry <u>ISO 10136-3:1993</u>

https://standards.iteh.ai/catalog/standards/sist/31392597-ce9f-48ce-9f34-50b8cbc7ef3e/iso-10136-3-1993 Verre et verrerie — Analyse des solutions d'attaque —

Partie 3: Dosage de l'oxyde de calcium et de l'oxyde de magnésium par spectrométrie d'absorption atomique dans la flamme

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 10136-3 was prepared by Technical Committee ISO/TC 48, Laboratory glassware and related apparatus, Sub-Committee SC 5, Quality of glassware. ISO 10136-3:1993

https://standards.iteh.ai/catalog/standards/sist/31392597-ce9f-48ce-9f34-ISO 10136 consists of the following parts_(under/the/general title) Glass and glassware — Analysis of extract solutions:

- Part 1: Determination of silicon dioxide by molecular absorption spectrometry
- Part 2: Determination of sodium oxide and potassium oxide by flame spectrometric methods
- Part 3: Determination of calcium oxide and magnesium oxide by flame atomic absorption spectrometry
- Part 4: Determination of aluminium oxide by molecular absorption spectrometry
- Part 5: Determination of iron(III) oxide by molecular absorption spectrometry and flame atomic absorption spectrometry
- Part 6: Determination of boron(III) oxide by molecular absorption spectrometry

Annex A of this part of ISO 10136 is for information only.

© ISO 1993

Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Introduction

Classifications of glass or glassware, in National or International Standards and in the various pharmacopoeia, have relied for many years on a titration of extract solutions with a diluted mineral acid. Such solutions may contain not only the alkali metal oxides (sodium and potassium), but also the alkaline earth oxides (calcium and magnesium), which are also titrated by acid. Thus, the determination is actually of the total alkalinity of the extract solution, although this is sometimes calculated as the equivalent mass of sodium oxide. In recent years, with the advent of more modern techniques, such as flame atomic absorption spectrometry, there has been a move towards a more complete analysis of extract solutions and a measurement of the concentrations of the separate elements present.

iTeh S Technical Committee 2, Chemical Durability and Analysis, of the International Commission on Glass (ICG), investigated colorimetric methods for determining calcium and magnesium (see [5] in annex A) but concluded that none was particularly suitable for the determination of the very low concentrations normally found in extract solutions. In round-robin studies involving ten Jaboratories, a procedure using flame atomic absorption https://standards.it.spectrometry.dwas.devised.and.recommended for analysing extract solutionsbc7ef3e/iso-10136-3-1993

> The results of investigations on turbidities, especially in grain test solutions, showed that acidification to dissolve possible hydroxides and/or carbonates is necessary prior to the analytical determination. This is achieved by using spectroscopic buffer solutions, which are normally strongly acidic, or by addition of acids.

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

This page intentionally left blank ISO 10136-3:1993 https://standards.iteh.ai/catalog/standards/sist/31392597-ce9f-48ce-9f34-50b8cbc7ef3e/iso-10136-3-1993

Glass and glassware — Analysis of extract solutions —

Part 3:

Determination of calcium oxide and magnesium oxide by flame atomic absorption spectrometry

1 Scope

Part 2: Burettes for which no waiting time is This part of ISO 10136 specifies the analytical pro RDspecified. VIEW cedure, using flame atomic absoprtion spectrometry, for measuring the concentrations of calcium and s. 150 648:1977, Laboratory glassware — One-mark magnesium, expressed as their oxides (CaO and pipettes. MgO), released into extract solutions during hydrolytig36-3:1980, p25 1:1081, Laboratory glassware — Graduated

resistance test procedures resistandards.iteh.ai/catalog/standards/sis/) 835-1:1981, Laboratory glassware — Graduated resistance test procedures for a local standards.iteh.ai/catalog/standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory glassware — Graduated for a local standards/sis/) 835-1:1981, Laboratory

This part of ISO 10136 applies to the analysis of extract solutions obtained from any kind of glass or glassware, including laboratory and pharmaceutical ware made, for example, from borosilicate glass (such as borosilicate glass 3.3 according to ISO 3585), neutral glass, or soda-lime-silica glass as defined in ISO 4802[3][4], food and drink packaging ware, tableware and kitchenware. The extract solution may be obtained from glass articles, for example according to ISO 4802, or from glass as material, for example when tested according to ISO 719[1] or ISO 720[2]. In addition, it may be applied to the extract solutions produced by any method for measuring the hydrolytic resistance of glass or glassware.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10136. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10136 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 835-2:1981, Laboratory glassware — Graduated pipettes — Part 2: Pipettes for which no waiting time is specified.

ISO 385-2:1984, Laboratory glassware — Burettes —

ISO 835-3:1981, Laboratory glassware — Graduated pipettes — Part 3: Pipettes for which a waiting time of 15 s is specified.

ISO 1042:1983, Laboratory glassware — One-mark volumetric flasks.

ISO 3585:1991, Borosilicate glass 3.3 — Properties.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods.

ISO 3819:1985, Laboratory glassware — Beakers.

ISO 6955:1982, Analytical spectroscopic methods — Flame emission, atomic absorption, and atomic fluorescence — Vocabulary.

3 Definitions

For the purposes of this part of ISO 10136, the following definitions apply. **3.1 extract solution:** The aqueous solution obtained from the reaction of glass with water under specific conditions.

3.2 sample measuring solution: The solution actually used for measuring the concentration of the analyte. It may be the undiluted, diluted or modified extract solution.

3.3 analyte: The element or constituent to be determined.

3.4 stock solution: A solution of appropriate composition containing the analyte, expressed as its oxide, in a known but high concentration.

3.5 standard solution: A solution containing the analyte, expressed as its oxide, in a known concentration suitable for the preparation of reference or calibration solutions.

3.6 set of calibration solutions; set of reference solutions: A set of simple or synthetic reference solutions having different analyte concentrations. The zero member is, in principle, the solution having zero concentration of the analyte. [ISO 6955]

atomic absorption spectrometry A 5.2 Calcium oxide, stock solution.

(FAAS): A technique for determining the concentration of chemical elements based on the measure carbonate (5.1) and transfer to a 150 ml dish. Cover carbonate (5.1) and transfer to a 150 ml dish. Cover ment of the absorption of characteristic with a watch glass and carefully add 100 ml of electromagnetic radiation in a vapour phase in a flameso 1013 hydrochloric acid (5.5) to dissolve. Heat almost to https://standards.iteh.ai/catalog/standard/ing/3until_all/thef_das_has4 been evolved, rinse the 3.8 spectrochemical buffer solution: A solution of reflexion derside of the watch glass into the solution, cool a substance or substances added to the sample and transfer the solution to a 1 000 ml one-mark measuring solution and to the reference solutions in volumetric flask (6.4). Make up to the mark with water order to reduce interferences during flame specand mix. trometric measurements.

age.

3.9 optimum working range: The range of concentrations of an analyte in solution over which the relationship between absorption (or emission) and concentration is linear.

3.10 blank test solution: A solution prepared in the same way as the sample measuring solution but so that it does not contain the analyte to be determined.

4 Principle

3.7 flame

Atomizing of the extract solution to be analysed in the flame of an air/acetylene or dinitrogen monoxide/ acetylene burner through which is passed the characteristics light emitted by a calcium or magnesium hollow cathode lamp. Measurement of the portion of the 422,7 nm line absorbed by calcium atoms and of the 285,2 nm line absorbed by magnesium atoms using a flame atomic absorption spectrometer, and comparison with the absorption produced by reference solutions of known calcium and magnesium concentrations atomized under the same conditions.

5 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade, and grade 1 or grade 2 water as specified in ISO 3696.

When acids and ammonium hydroxide are specified only by name or chemical formula, the concentrated reagent is intended. The concentrations of diluted acids or ammonium hydroxide are specified as a ratio, stating the number of volumes of the concentrated reagent to be added to a given number of volumes or water. For example, 1+3 means that 1 volume of the concentrated reagent shall be diluted with 3 volumes of water.

Commercially available standard solutions for spectrometry may be used for the preparation of stock or standard solutions.

5.1 Calcium carbonate (CaCO₃), dried at 110 °C (at least) and stored in a desiccator.

5.3 Calcium oxide, standard solution.

Using a one-mark pipette (6.6), transfer 25 ml of the calcium oxide stock solution (5.2) to a 250 ml one-mark volumetric flask (6.4), make up to the mark with water and mix.

Transfer to a 1 000 ml stoppered bottle (6.3) for stor-

1 ml of this stock solution contains 1 mg of CaO.

Transfer to a 250 ml stoppered bottle (6.3) for storage.

This solution shall be freshly prepared immediately before use.

1 ml of this standard solution contains 100 μg of CaO.

5.4 Hydrochloric acid (HCl), $\rho = 1,19$ g/ml.

5.5 Hydrochloric acid, diluted 1 + 12.

5.6 Magnesium oxide (MgO), ignited at 1 050 °C for 1 h and allowed to cool in a desiccator.

5.7 Magnesium oxide, stock solution.

Weigh, to the nearest 0,1 mg, 0,100 0 g of magnesium oxide (5.6) and transfer it to a 250 ml beaker (6.2). Add 70 ml of hydrochloric acid (5.5) and heat, if necessary, to dissolve. Cool the solution, then transfer it to a 1 000 ml one-mark volumetric flask (6.4), make up to the mark with water and mix.

Transfer to a 1 000 ml stoppered bottle (6.3) for storage. Discard after 1 month.

1 ml of this stock solution contains 100 µg of MgO.

5.8 Magnesium oxide, standard solution.

Using a one-mark pipette (6.6), transfer 25 ml of the magnesium oxide stock solution (5.7) to a 250 ml one-mark volumetric flask (6.4), make up to the mark with water and mix.

Transfer to a 250 ml stoppered bottle (6.3) for stor-6.8 Balance, with a discrimination of 0,1 mg. age. i'l'eh S'l'ANDAF

This solution shall be freshly prepared immediately **15.169** Filter papers, of the ashless type washed twice with acid, and designated as follows:

1 ml of this standard solution contains 10 wg 10 f 36-3:1993 "open" or "coarse" will have a porosity generally https://standards.iteh.ai/catalog/standards/sist/31307507 ceut 48060954

50b8cbc7ef3e/iso-10136-3-

5.9 Lanthanum oxide (La₂O₃).

5.10 Spectrochemical buffer solution

Transfer 11,7 g of lanthanium oxide (5.9) to a 250 ml beaker (6.2), add 100 ml of hydrochloric acid (5.4) and dissolve while heating gently. Cool, transfer to a 1 000 ml one-mark volumetric flask (6.4), make up to the mark with water and mix.

Apparatus 6

All laboratory glassware, except pipettes and burettes, shall be made of borosilicate glass, preferably of type 3.3 complying with the requirements in ISO 3585.

Ordinary laboratory apparatus, and

6.1 Flame atomic absorption spectrometer, equipped with line sources for calcium (422,7 nm) and magnesium (285,2 nm) and with gas supplies and burners for air/acetylene or dinitrogen monoxide/ acetylene gas mixtures.

6.2 Beakers, of a suitable capacity e.g. about 250 ml, and complying with the requirements in ISO 3819.

6.3 Bottles, stoppered, of a suitable capacity e.g. about 250 ml and 1 000 ml.

6.4 One-mark volumetric flasks, of a suitable capacity, and complying with the requirements for class A one-mark volumetric flasks in ISO 1042.

6.5 Graduated pipette, of capacity 5 ml, and complying with the requirements for class A graduated pipettes in ISO 835-1, ISO 835-2 or ISO 835-3.

6.6 One-mark pipettes, of a suitable capacity, and complying with the requirements for class A onemark pipettes in ISO 648.

6.7 Burettes, of suitable capacity e.g. of 10 ml, and complying with the requirements for class A burettes in ISO 385-2.

"medium" will have a porosity generally used for filtering calcium oxalate;

"close" or "fine" will have a porosity generally used for filtering barium sulfate.

Sampling and samples 7

The sample for analysis shall be the extract solution produced in any hydrolytic resistance test procedure.

Procedure 8

8.1 Instrumentation

Adjust the flame atomic absorption spectrometer to the optimum operating condition, as specified in the operating manual, using the parameters shown in table 1.

Element	Usual optimum working range (µg/ml)	Gas mixture	Detection line nm
Ca	1 to 5	air/acetylene or N_2O /acetylene	422,7
Mg	0,1 to 0,5		285,2

Table 1 — Parameters for the measurements of (Ca) and (Mg)

8.2 Preparation of reference solutions

8.2.1 For calcium

Using a graduated pipette (6.5), transfer 0 ml, 1.00 ml, 2.00 ml, 3.00 ml, 4.00 ml and 5.00 ml volumes of the calcium oxide standard solution (5.3) to separate 50 ml one-mark volumetric flasks (6.4). Add, with a graduated pipette (6.5) or a burette (6.7), 5 ml of the spectrochemical buffer solution (5.10) to each one-mark volumetric flask. Then make up each solution to the mark and mix.

8.3.2 For measurement of magnesium oxide (MgO)

Spray the reference solution (8.2.2) containing 1,0 µg/ml of MgO into the flame of the burner and adjust the instrument to optimum sensitivity. Using precisely the same instrumental conditions, spray the series of reference solutions (in order of increasing concentration) and note the readings. Repeat the adjustment and spraving sequence at least three times and note the readings. Calculate the mean values of the readings and plot the graph of readings against MgO concentrations.

These solutions shall be prepared immediately before RD PREVIEW use. 8.4 Preparation of the sample measuring 1 ml of the reference solution contains of and arcsolution and the blank test solution

4 μg, 6 μg, 8 μg and 10 μg of CaMgO respectively.

ISO 10138.4.1993Sample measuring solution

8.2.2 For magnesium

1,00 ml, 2,00 ml, 3,00 ml, 4,00 ml and 5,00 ml volumes of the magnesium oxide standard solution (5.8) to separate 50 ml one-mark volumetric flasks (6.4). Add, with a graduated pipette (6.5) or a burette (6.7), 5 ml of the spectrochemical buffer solution (5.10) to each one-mark volumetric flask. Then make up each solution to the mark and mix.

These solutions shall be prepared immediately before use.

1 ml of the reference solution contains 0 µa. 0.2 µa. 0,4 µg, 0,6 µg, 0,8 µg and 1,0 µg of MgO respectively.

8.3 Preparation of the calibration graphs

8.3.1 For measurement of calcium oxide (CaO)

Spray the reference solution (8.2.1) containing 10 µg/ml of CaO into the flame of the burner and adjust the instrument to optimum sensitivity. Using precisely the same instrumental conditions spray the series of reference solutions (in order of increasing concentration) and note the readings. Repeat the adjustment and spraying sequence at least three times and note the readings. Calculate the mean values of the readings and plot the graph of readings against CaO concentrations.

Using a graduated pipette (6.5), transfer 0 ml, auot of the extract solution interview. 400 ml 400 m quot of the extract solution into a beaker (6.2) and add 5 ml of the spectrochemical buffer solution (5.10). Heat till boiling, cool and filter the solution using an appropriate filter (6.9) into a 50 ml one-mark volumetric flask (6.4). Wash the filter carefully with small portions of warm water, to make up to the mark.

> If the measured concentrations of CaO or MgO NOTE 1 are too low or too high, concentrate by evaporating or diluting respectively. Ensure that the volume of spectrochemical buffer added is equal to 10 % of the volume of the volumetric flask.

8.4.2 Blank test solution

Prepare the blank test solution using a volume of water equal to the volume of extract solution used to prepare the sample measuring solution.

8.5 Determination of CaO and MgO

8.5.1 Determination of CaO

Spray the reference solution (8.2.1) containing 10 µg/ml of CaO into the flame of the burner and adjust the spectrometer to optimum sensitivity. Using precisely the same instrumental conditions, spray the sample measuring solution (8.4.1) and the blank test solution (8.4.2) and note the readings. Repeat the adjustment and measurement of the sample measuring solution and blank test solution at least three times and calculate the mean values of the readings.

8.5.2 Determination of MgO

Spray the reference solution (8.2.2) containing 1,0 μ g/ml of MgO into the flame of the burner and adjust the spectrometer to optimum sensitivity. Using precisely the same instrumental conditions, spray the sample measuring solution (8.4.1) and the blank test solution (8.4.2) and note the readings. Repeat the adjustment and measurement of the sample measuring solution and blank test solution at least three times and calculate the mean values of the readings.

9 Expression of results

Determine the masses of calcium oxide (CaO) and magnesium oxide (MgO) in the sample measuring solution (8.4.1) and the blank test solution (8.4.2) from the calibration graphs (8.3.1 and 8.3.2, respectively). Subtract and calculate the concentrations of calcium

oxide and magnesium oxide in the extract solution and express as micrograms of CaO and MgO per millilitre of extract solution.

10 Test report

The test report shall include the following information:

- a) a reference to this part of ISO 10136;
- b) an identification of the extracted samples;
- c) a reference to the hydrolytic resistance test method used (see annex A) to produce the extract solution;
- d) a reference to the method of measurement used, i.e. using air/acetylene or dinitrogen monoxide/ acetylen mixtures;
- e) the results obtained, expressed as micrograms of CaO per millilitre and/or micrograms of MgO per millilitre of extract solution;
- f) any unusual features noted during the determi-

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10136-3:1993</u> https://standards.iteh.ai/catalog/standards/sist/31392597-ce9f-48ce-9f34-50b8cbc7ef3e/iso-10136-3-1993