
TECHNICAL 
REPORT 

ISO/IEC 
TR 10182 

First edition 
1993-12-15 

Information technology - Programming 
languages, their environments and system 
software interfaces - Guidelines for 
language bindings 

Technologies de I’informa tion - Langages de programmation, leurs 
environnemen ts et interfaces logicielles des sys t&mes - Techniques 
d/interface pour /es normes de langages de programmation 

Reference number 
lSO/IEC TR 10182:1993(E) 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/IEC TR 10182:1993(E) 

Contents 

1 INTRODUCTION 1 
1.1 Status of The Document I 
1.2 Scope 1 
1.3 References 2 
1.4 Terms and Abbreviations 4 

2 
2.1 
2.2 
23 . 
24 . 
25 . 
26 
217 

OVERVIEW OF FUNCTIONAL BINDING METHODS 
Introduction to Methods 
System Facility Standard Procedural Interface (Method 1) 
User-Defined Procedural Interfaces (Method 2) 
Programming Language Extensions with Native Syntax(Method 3) 
Programming Languages with Embedded Alien Syntax (Method 4) 
Binding Pre-Existing Language Elements (Method 5) 
Conclusions. 

3 
31 . 
32 . 
33 . 
34 
3'4 1 . 
3'4 2 
3:4:2.1 
3.4.2.2 
3.4.2.3 
3.4.2.4 
3.4.3 
3.4.4 
3.4.5 

GUIDELINES 
Organizational Guidelines for Preparation of Language Bindings 
General Technical Guidelines 
Recommendations for Functional Specifications 
Method-Dependent Guidelines for Language Bindings. 
Introduction to Method-Dependent Guidelines 
Guidelines for Standard Procedural Interfaces 
Relationship of the Functional Interface Standard to the Binding 
Suggested Actions for Standards Committees 
Recommendations for Programming Language Committees 
Procedural Language Binding Generic Issues 
Guidelines for User-Defined Procedural Interfaces 
Guidelines for Programming Language Extensions with Native Syntax 
Uses of Programming Languages with Embedded Alien Syntax 

IO 
10 
11 
12 
13 
13 
13 
14 
15 
16 
16 
21 
22 
22 

4 FUTURE DIRECTIONS 23 

ANNEX A - GRAPHICS BINDING EXAMPLES 24 

ANNEX B - GKS BINDINGS GENERIC ISSUES 31 

0 lSO/IEC 1993 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced 
or utilized in any form or by any means, electronic or mechanical, including photocopying and 
microfilm, without permission in writing from the publisher. 

lSO/IEC Copyright Office l Case Postale 56 l Cl-l-1 211 Geneve 20 0 Switzerland 
Printed in Switzerland 

ii 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



Q ISOJIEC ISO/IEC TR 10182:1993(E) 

Foreword 

IS0 (the International Organization for Standardization) and IEC (the Inter- 
national Electrotechnical Commission) form the specialized system for 
worldwide standardization. National bodies that are members of IS0 or 
IEC participate in the development of International Standards through 
technical committees established by the respective organization to deal 
with particular fields of technical activity. IS0 and IEC technical com- 
mittees collaborate in fields of mutual interest. Other international organ- 
izations, governmental and non-governmental, in liaison with IS0 and IEC, 
also take part in the work. 

In the field of information technology, IS0 and IEC have established a joint 
technical committee, lSO/IEC JTC 1. 

The main task of technical committees is to prepare International Stan- 
dards, but in exceptional circumstances a technical committee may pro- 
pose the publication of a Technical Report of one of the following types: 

- type 1, when the required support cannot be obtained for the publica- 
tion of an International Standard, despite repeated efforts; 

- type 2, when the subject is still under technical development or where 
for any other reason there is the future but not immediate possibility 
of an agreement on an International Standard; 

- type 3, when a technical committee has collected data of a different 
kind from that which is normally published as an International Standard 
(“state of the art”, for example). 

Technical Reports of types 1 and 2 are subject to review within three years 
of publication, to decide whether they can be transformed into Interna- 
tional Standards. Technical Reports of type 3 do not necessarily have to 
be reviewed until the data they provide are considered to be no longer 
valid or useful. 

lSO/IEC TR 10182, which is a Technical Report of type 3, was prepared 
by Joint Technical Committee lSO/IEC JTC 1, Information technology, 
Sub-Committee SC 22, Programming languages, their environments and 
system software interfaces. 

. . . 
III 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



This page intentionally left blank 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



TECHNICAL REPORT 
0 lSO/iEC 

ISO/IEC TR 10182:1993(E) 

Information technology - Programming languages, 
their environments and system software interfaces - 
Guidelines for language bindings 

1 INTRODUCTION 

1 .I Status of the Document 

This document is a compilation of the experience and knowledge gained by the members of ISO/IEC 
JTCl/SC22/WGll (Techniques for Bindings) from the generation of programmers’ interfaces to 
FUNCTIONAL INTERFACE STANDARDS. Although current experience was derived from the fields of 
computer graphics and database management, the problems discussed are thought to be generally 
applicable for mappings of other functional interface standards to programming languages. This 
document is intended 

a) to identify the problems and conflicts which must be resolved; 
b) to suggest guidelines for future use; 
C) to provide scope and direction to required additional work, such as common procedural 

calling mechanisms and data types; and 
d) as a historical record of past experiences and decisions. 

This document is incomplete; the authors have concentrated on those areas where experience and 
expertise was readily available. The ideas and issues brought forward here emerged from more than ten 
years of work, and are represented in international Standards. . 

Section 2 of this document contains the results of a survey of current methods used for language binding 
development. Characteristics of each method are given, followed by reasons for the selection of the 
method. 

Application of the methods has suggested some guidelines that are presented in Section 3. Sections 2 
and 3 contain documentation of the current state of language binding efforts; Section 4 addresses future 
directions for language bindings. 

Circulation of this document is necessary at this stage, as input and discussion from representatives of 
iSO/iEC JTCXSC21 (functional specification standards developers), ISO/iEC JTCl/SC24 (computer 
graphics standards developers), and iSO/I EC JTCI /SC22 (language standards developers) is urgently 
sought. The document in its current form may be useful for those about to embark on language binding 
developments. 

1.2 Scope 

This document is based on experience gained in the standardization of two major areas in information 
processing. One area covers programming languages. The other area is composed of the services 
necessary to an application program to achieve its goal. The sewices are divided into coherent groups, 
each referred to as a SYSTEM FACILITY, that are accessed through a FUNCTIONAL INTERFACE. The 
specification of a system facility, referred to as a FUNCTIONAL SPECIFICATION, defines a collection of 
SYSTEM FUNCTIONS, each of which carries out some well-defined service. 

1 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/IEC TR 10182:1993(E) o lSO/IEC 

Since in principle there is no reason why a particular system facility should not be used by a program, 
regardless of the language in which it is written, it is the practice of system facility specifiers to define an 
‘abstract‘ functional interface that is language independent. In this way, the concepts in a particular system 
facility may be refined by experts in that area without regard for language peculiarities. An internally 
coherent view of a particular system facility is defined, relating the system functions to each other in a 
consistent way and relating the system functions to other layers within the system facility, including 
protocols for communication with other objects in the total system. 

However, if these two areas are standardized independently, it is not possible to guarantee that 
programs from one operating environment can be moved to another, even if the programs are 
written in a standard programming language and use only standard system facilities. A language 
binding of a system facility to a programming language provides language syntax that maps the 
system facility’s functional interface. This allows a program written in the language to access the 
system functions constituting the system facility in a standard way. The purpose of a language 
binding is to achieve portability of a program that uses particular facilities in a particular 
language. Examples of system facilities that have had language bindings developed for them are 
GKS, NDL, and SQL (see Section 1.3, References). it is anticipated that further language binding 
development will be required. Some system facilities currently being standardized have no 
language bindings and additional system facilities will be standardized. There is a possibility of 
n x m language bindings, where n is the number of languages and m the number of system 
facilities. 

The scope of this document is to classify language binding methods, reporting on particular instances in 
detail, and to produce suggested guidelines for future language binding standards. 

Note that the language bindings and the abstract facility interfaces must have a compatible run time 
representation, but the abstract facility does not necessarily have to be written in the host language. For 
example, if the application program is using a Pascal language binding and the corresponding facility is 
written in FORTRAN, there must be a compatible run time representation in that operating environment. 
How this compatibility is achieved is outside the scope of these guidelines. This is generally a property of 
the operating environment defined by the implementor, and is reviewed briefly in this document. 

1.3 References 

ISO/IEC 1539:1991, Information Technology - Programming languages - FORTRAN. 

ISO/IEC 1989:1985, Programming Languages - COBOL. 

ISO/IEC 1989:1985/Amd.l:1992, Programming Languages - COBOL -Amendment 1. 

IS0 6373:1984, Data processing - Programming languages - Minimal BASIC. 

IS0 7185:1990, Information technology - Programming languages - Pascal. 

IS0 7942:1985, Jnformation processing systems - Computer graphics - Gmphkal Kernel System (GKS) 
functional description. 

IS0 8651-l :1988, Information processing systems - Computer graphics - Graphical Kernel System 
(GKS) language bindings - Part I: FORTRAN. 

IS0 8651.2:1988, Information processing systems - Computer graphics - Graphical Kernel System 
(GKS) language bindings - Part 2: Pascal. 

IS0 8651.3:1988, Information processing systems - Computer graphics - Graphical Kernel System 
(GKS) language bindings - Part 3: Ada. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



@ lSO/lEC ISO/IEC TR 10182:1993(E) 

IS0 8651-43988, Information technology - Computer graphics - Graphical Kernel System (GKS) 
language bindings - Part 4: C. 

IS0 8652:1987, Programming Languages - Ada. 

IS0 8805:1988, Information processing systems - Computer graphics - Graphical Kernel System for 
Three Dimensions (GKS-3D) #functional description. 

iSO/IEC 880~l?, Information technology - Computer graphics - Graphical Kernel System for Three 
Dimensions (GKS-3D) language bindings - Par? I: FORTRAN. 

IS0 8907:1987, Information processing systems - Database Languages - NDL. 

ISO/IEC 9075:1992, Information technology - Database Languages - SQL. 

lSO/lEC 9592:1984, Information processing systems - Computer Graphics - Programmer% Hierarchical 
Interactive Graphics System (PHIGS). 

ISO/IEC 9593-l :1990, Information processing systems - Computer graphics - Programmer’s Hierarchtil 
interactive Graphics System (PHIGS) language bindings - Part 1: FORTRAN. 

lSO/IEC 9593-2?, Information technology - Computer Graphics - Programmer’s Hierarchical Interactive 
Graphics System (PHIGS) language bindings - Pafl2: Extended Pascal. 

ISO/IEC 9593.3:1990, Information technology - Computer Graphics - Programmer’s Hierarchical 
Interactive Graphics System (PHIGS) language bindings - Part 3: Ada. 

ISO/I EC 9593-4: 1991, Information technology - Computer Graphics - Programmer’s Hierarchical 
interactive Graphics System (PHIGS) language bindings - Part 4: C. 

ISO/lEC 9899:1990, Programming languages - ‘c’. 

ISO/IEC 10206:1991, Information Technology - Programming languages - Extended Pascal. 

C. Osland, Case Study of GKS Development, Eurographics Tutorials 1983, Springer. 

J. R. Gallop, C. Osland, Experience with implementing GKS on a Perg and Other Computers, Computer 
Graphics Forum 9(7), North-Holland 1985. 

F. R. A. Hopgood, D. Duce,J. R. Gallop, 0. Sutciiffe, Introduction to the Graphical Kernel System (GKS), 
Academic Press, 1983. 

M. Sparks, J. R. Gallop, Language Bindings for Computer Graphics Standards, IEEE Computer Graphics 
and Applications, Vol 6, Number 8, August 1986. 

M. Sparks, Graphics Language Bindings, Computer Graphics Forum, Journal of the European Association 
for Computer Graphics, vol. 4(4) 1985. 

M. Sparks, Graphics Standards Bindings - What Are They and When Can We Use Them?, Computer 
Graphics/November 1985. 

1 To be published. 

3 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/IEC TR 10182:1993(E) QISO/IEC 

Language Binding Generic Issues (document within ISO/lEC JTCl SC24/WG4 and ISO/IEC JTCI 
SC22/WGll) 

1 .4 Terms and Abbreviations 

ABSTRACT SERVICE INTERFACE: An interface having an abstract definition that defines the format and 
the semantics of the function invoked independently of the concrete syntax (actual representation) of the 
values and the invocation mechanism. 

ALIEN SYNTAX: Syntax of a language other than the host language. 

CGI: Computer Graphics Interface standard (IS0 DP) -a functional specification of the computer graphics 
programming system facility. 

EMBEDDED ALIEN SYNTAX: Statements in a special language for access to a system facility, included in 
a source program written in a standard programming language. 

EXTERNAL IDENTIFIER: An identifier that is visible outside of a program. 

FUNCTIONAL INTERFACE: The abstract definition of the interface to a system facility by which system 
functions are provided. 

FUNCTIONAL SPECIFICATION: The specification of a system facility. In the context of this document, the 
functional specification is normally a potential or actual standard. For each system function the 
specification defines the parameters for invocation and their effects. 

GKS: Graphical Kernel System standard (lSO/lEC 7942) - a functional specification of the computer 
graphics programming system facility. 

HOST LANGUAGE: The programming language for which a standard language binding is produced; the 
language in which a program is written. 

IDENTIFIER: Name of an object in an application program that uses a system facility. 

IMPLEMENTATION-DEFINED: Possibly differing between different processors for the same language, 
but required by the language standard to be defined and documented by the implementor. 

IMPLEMENTATION-DEPENDENT: Possibly differing between different processors for the same 
language, and not necessarily defined for any particular processor. 

IMPLEMENTOR: The individual or organization that realizes a system facility through software, providing 
access to the system functions by means of the standard language bindings. 

LANGUAGE BINDING OF fT0 /or I LANGUAGE BINDING OF f: A specification of the standard interface to 
facility ffor programs written in language 1. 

LANGUAGE COMMITTEE: The IS0 technical Subcommittee or Working Group responsible for the 
definition of a programming language standard. 

MDL: A language for the specification of an interface to a generic system facility, the MDL (module 
definition language) is used to generate a module to support the specific system facility access needs of 
an application program. 

NDL: Database Language NDL may be used to define the structure of a database using the network 
model of data.NDL is defined in IS 8907. (See Section 1.3, References). The standard also includes the 
data manipulation functions and their language bindings. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



OISO/I EC ISO/IEC TR 10182:1993(E) 

PHIGS: Programmers Hierarchical Interactive Graphics System standard (lSO/lEC 9593) - a functional 
specification of the 3-D computer graphics programming system facility. 

PROCEDURAL BINDING (system facility standard procedural interface): The definition of the interface to a 
system facility available to users of a standard programming language through procedure calls. 

PROCEDURAL INTERFACE DEFINITION LANGUAGE: A language for defining specific procedures for 
interfacing to a system facility as used, for example, in IS 8907 Database Language NDL. 

PROCEDURE: A general term used in this document to cover a programming language concept which 
has different names in different programming languages - subroutine and function in FORTRAN, 
procedure and function in Pascal, etc. A procedure is a programming language dependent method for 
accessing one or more system functions from a program. A procedure has a name and a set of formal 
parameters with defined data types. Invoking a procedure transfers control to that procedure. 

PROCESSOR: A system or mechanism that accepts a program as input, prepares it for execution, and 
executes the process so defined with data to produce results. 

PROGRAMMING LANGUAGE EXTENSIONS WITH NATIVE SYNTAX or native syntax binding: The 
functionality of the system facilities is incorporated into the host programming language so that the system 
functions appear as natural parts of the language. The compiler processes the language extensions and 
generates the appropriate calls to the system facility functions. 

SQL: Database Language SQL (Structured Query Language) defines the structure of a database using 
the Relational model of data. Database Language SQL is defined in IS 9075. (See Section 1.3, 
References). The standard also includes the data manipulation functions and their language bindings. 

SYSTEM FACILITY: A coherent collection of services to be made available in some way to an application 
program. The system facility may be defined as a set of discrete system functions with an abstract service 
interface. 

SYSTEM FACILITY COMMITTEE: The IS0 technical subcommittee or Working Group responsible for the 
development of the functional specification of a system facility. 

SYSTEM FUNCTION: An individual component of a system facility, which normally has an identifying title 
and possibly some parameters. A system function’s actions are defined by its relationships to other 
system functions in the same system facility. 

2 OVERVIEW OF FUNCTIONAL BINDING METHODS 

2.1 Introduction to Methods 

This section discusses the binding development problem in general by documenting a number of 
different approaches to bindings. Each approach has its own characteristics from the points of view of the 
user, the implementor, and the specifiers of standards. 

The first task in specifying a binding of a system facility is to determine the usability, stability, and 
implementation goals of both the binding and the system facility, and to use these to help select the best 
method. 

The functional binding methods are: 
Method 1. Provide a completely defined procedural interface (the System Facility Standard 

Procedural Interface) 

5 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/IEC TR 10182:1993(E) @ISO/IEC 

Method 2. Provide a procedural interface definition language (User-Defined Procedural Interface) 

Method 3. Provide extensions to the programming language, using native syntax 

Method 4. Allow alien syntax to be embedded in the programming language 

Method 5. Binding pre-existing language elements. 

Before addressing the individual methods, a discussion of a general issue that affects programming 
language implementations is indicated. This issue is whether to increase the capability of a given compiler 
to encompass the system facility, or to provide a pre-processor. Though this is of no direct concern to 
language binding developers, they may wish to consider the feasibility of each option when choosing a 
method. 

A pre-processor is necessary for Method 4 above, and optional for Method 3. Method 1 does not require 
a pre-processor but it may be useful to provide a utility that checks the syntax of all the procedure calls. 
The function of a pre-processor is to scan a program source text, to identify alien syntax or syntax 
associated with a given facility, and to replace this text by host language constructs (for example, calls to 
system functions) that can be compiled by the standard compiler. 

The advantages of a pre-processor are: 
0 A pre-processor can often carry out semantic checking not provided by the language 

compilers. 
0 A pre-processor can be independent of the particular language compiler. 
8 A pre-processor approach avoids problems that result from tampering with an existing 

language standard or with certified compilers. 
0 If the system facility is enhanced, it is easier to modify a pre-processor than a full compiler. 

The disadvantages are: 
0 A pre-processor requires an extra pass through the source. 
l There may be a problem with multiple pre-processors for different system facilities existing in 

the same environment. 
0 A pre-processor may produce code unfamiliar to the programmer and make debugging more 

difficult - for example, it may change statement numbers. 
0 Depending on the language extensions, it may be necessary to analyze the syntax of most of 

the language to detect the code to be replaced. 

In the following sections, each functional binding method is discussed, circumstances that suggest a 
method be used or avoided are given, and relevant advantages and disadvantages are defined. 

There is often more than one way to implement a given method. In addition, it may be necessary to 
implement more than one method for any given facility. 

2.2 System Facility Standard Procedural Interface (Method 1) 

With functional binding Method 1, the system facility is designed to support a fixed number of procedures. 
Each procedure has formal parameters of defined data types and each procedure invocation passes 
actual parameter values which match the data types. 

Method 1 is appropriate when the syntax of the interface provided for each system function is fairly simple 
and can be fully defined by a few parameters. The method can become unwieldy when the functions that 
can be invoked use a large number of data types whose structure may be unknown until the time of 
invocation, and require parameters or data types that are unknown in structure until the time of invocation. 

6 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



OISO/I EC ISO/IEC TR 10182:1993(E) 

lt is often useful to define subsets of the facility to suit different modes of use. For example, where the 
functions are largely independent and a program only requires a few of them, it may be possible to reduce 
the size of the run-time system by omitting portions of the system facility. These subsets are reflected by 
levels of conformance to the functional interface standard. 

Use of Method 1 requires that the procedural interface be redefined for each programming language, in 
terms of the syntax and data types of that language. Thus, separate language binding standards to the 
same functional interface standard are created. 

Method 1 has been used by GKS and other graphics draft standards, where the syntax of the parameters 
is fairly simple. 

It should be noted that, if languages used a common procedure calling mechanism and equivalent sets of 
data types (ISO/IEC JTCl has assigned work items on these topics to SC22/WGl l), then it would be 
possible to derive system facility standard procedural interfaces from the abstract definitions. It would also 
be possible to derive system facility standard procedural interfaces from abstract definitions under other 
conditions, particularly for languages of sufficient abstraction (like Pascal and Ada). 

2.3 User-Defined Procedural Interfaces (Method 2) 

With functional binding Method 2, the run-time procedural interface is defined by the user, and the system 
functions invoked by the procedures are defined in a language appropriate to the system facility. 

This method is appropriate when the interfaces to the system functions provided by the system facility are 
too complex to be defined by a few parameters, and when they cannot be easily contained in an 
exhaustive list. 

Method 2 allows the binding document to be easily adapted to different programming languages, since 
the binding only deals with data types. The naming of procedures and parameters is done by the user and 
not the binding specifiers. The procedural interface definitions are compiled and the resulting object 
module must be linked both to the application program and to the system facility. 

Advantages of Method 2 are: 
0 It may provide early diagnosis of errors. 
a It is processed once and may allow specific optimization (for example, optimization of query 

searches) leading to run-time economies. 
e Modules may be shared among application programs, since they exist independently. 
0 The task of creating modules may be specialized and managed outside of the user’s program. 

Disadvantages of Method 2 are: 
0 The definition of modules is an extra design step and risks poor usability when the 

programmer has to define his own modules. 
0 The procedural interface definition language is another language to learn unless the 

procedural interface language is part of the host language already. 
l There is generally an administrative overhead for managing modules to ensure that they get 

recompiled and relinked when necessary. 
l Porting an application involves porting the program and all the referenced procedural 

interface definition language modules. 
a An additional compiler has to be provided for the procedural interface language unless the 

procedural interface language is part of the host language already. 

7 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/lEC TR 10182:1993(E) OISO/IEC 

Database facilities use this method, where a Procedural Interface Definition Language (in the database 
standards this is referred to as a Module Definition Language), containing both declarations and 
procedural statements, is provided. A module may declare the data to be accessed as a view of the 
database (as it may reference a predefined view) and it defines both the form and the execution of 
database procedures. 

2.4 Programmlng Language Extenslons with Natlve Syntax (Method 3) 

With functional binding Method 3, the functionality of the system facilities is incorporated into the host 
programming language so that the system functions appear as natural parts of the language. The compiler 
processes the language extensions and generates the appropriate calls to the system facility functions 

This method is viable only when the system facility is stable and when the application requirements are 
well understood, since the cost of changes to programming language standards is high. 

The main advantage is usability. The users of the language have little extra to learn except the new 
facilities. It also allows the language developers, when defining new versions of the language, to choose 
a conforming subset of the facilities or to change the appearance of existing language facilities if they 
believe this is helpful to their users. Another advantage is that new data types appropriate to the system 
facility can be constructed. 

The disadvantages are that Method 3 ties a compiler to a particular system facility definition. It also ties the 
language specification to that of the system facility, making it highly desirable to process the 
standardization of both specifications together if enhancements are needed. tt may also be more difficult 
to use this method in a mixed-language environment, since the same facilities may have confusingly 
different appearances in different host languages. 

Method 3 has been tried with the COBOL and FORTRAN database facilities (Codasyl and ANSI) and with 
the graphics chapter for Basic. 

2.5 Programming Languages with Embedded Allen Syntax (Method 4) 

With functional binding Method 4, the system facilities are considered to be ‘driven’ by statements written 
in a ‘system facility language’ rather than in the host programming language. The embedded alien syntax 
must be clearly distinguishable from the host language so that it can be processed by a pre-processor. 

Method 4 is suitable when the system facilities are too complex to be invoked by simple procedures (as for 
Method 2, User-Defined Procedural Interfaces). The method could be implemented by having the 
pre-processor generate Module Definitions as in Method 2. 

The advantage of Method 4 over Method 2 is that simple programs, particularly those that may have a short 
life, may be easier to create. The advantage of Method 4 over Method 3 is that the independence of host 
language specifications from system facility specifications is maintained, so development of each can 
progress more quickly. 

The disadvantage of Method 4 over Method 2 is that this method substantially complicates the 
relationships between applications and system facilities. Although the alien syntax should be very similar 
for all host languages, the pre-processor will need to ‘know about’ the conventions of each host language 
to be able to generate the correct interfacing code. 

The disadvantage of Method 4 compared with Method 3 is that the programmer has to know two 
languages and may be confused by the differences between them. 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



OISO/IEC ISO/IEC TR 10182:1993(E) 

Method 4 is one of the options in the IS0 database standards. 

2.6 Binding Pre-Existing Language Elements (Method 5) 

In some cases, the host language may contain language elements that can be directly identified with 
corresponding elements of the abstract system facility. For example, in a binding to a system facility that 
opened and closed files, the host language may already contain constructs for opening and closing files 

The advantage is that pre-existing constructs are used and no extra work in binding needs to be done. If 
that facility is already present in the language, then making use of that facility avoids unnecessary 
perturbations to the language. 

Care should be taken that the language construct fully meets the requirements of the system facility. 

2.7 Conclusions 

The subsections above have described five different methods for developing functional bindings, and 
the circumstances in which they can be used. None of the methods is appropriate in all circumstances, or 
for all languages. In practice, a combination of methods may be appropriate. In some languages it is 
necessary to combine Method 4 with Method 5. 

It is possible, and often desirable, for a system facility to provide more than one method of binding, to give 
the implementor and user a choice. However, if an implementor provides only one of the standard 
methods, the user has no choice, and, unless there is a recognized way of converting between methods, 
portability problems result. 

The objective of a standard language binding is to enable a program to be portable when it is written in a 
standard programming language and accesses a standard system facility. Often the system facility is 
written in a different language from the application program and requires a certain compatibility between 
the implementations of the two source language compilers. Of course, similar compatibility is necessary 
for different compiler implementations of the same source language. In particular: 

a> the procedure calling mechanisms should be compatible, and 
b) corresponding data types should have compatible machine representations. 

Often, but not always, the hardware and operating system will determine appropriate standards or 
conventions for the representation of primitive data types and inter-program calls. Where there are 
mismatches, it is necessary for the implementor to create a layer of software to perform conversions 
between alternative data type representations or procedure calling mechanisms. There are now ISOAEC 
JTCI work items addressing a) and b) above. These are: work item 22.16 - Specification for a Model for 
Common Language-Independent Procedure Calling Mechanisms, and work item 22.17 - Specification for 
a Set of Common Language-Independent Data Types. 

The methods described have been used in current IS0 standards for database and graphics. Some 
papers defining bindings for communications facilities have also been reviewed, but the strategy to be 
adopted for IS0 OSI bindings is yet to be determined. 

9 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



ISO/IEC TR 10182:1993(E) OISOAEC 

3 GUIDELINES 

3.1 Organizational Guidelines for Preparation of Language Bindings 

This section describes some organizational guidelines that should be followed in order to facilitate the 
generation of binding standards. A general statement of each guideline is given, followed by some 
discussion. The guidelines appear in no particular order. 

, 
GUIDELINE 1 

I Standard bindings of some form should be developed for all standard system facilities that may be 
accessed from a standard proqramminq lanouaoe. I 

Here, “standard” means that an IS0 standard or draft standard exists for both the system facility and the 
language. 

There are standards describing system facilities which do not have standard language bindings associated 
with them. Lack of a standard may lead to implementor-defined interfaces, causing loss of portability. 

Either the language committee or the system facility committee should have primary responsibility for the 
lanauaae bindina. 

In this area, current practice is ‘whichever committee perceives the need for a binding’ or ‘if the language 
has an external procedure call mechanism, then the system facility, otherwise the language committee’. 
Unfortunately, sometimes a binding is required, yet no-one takes the initiative to start binding work; some 
method for resolving this impasse is required. 

lt is expected that it is the primary responsibility of the system facility committee to establish a reference 
binding to an arbitrary language and a generic binding. Subsequent bindings should be the responsibility 
of the appropriate language committees. In practice it is expected that the system facility committee will 
seek support from the applicable language committee in the creation of an arbitrary binding. This would 
increase the likelihood of getting a full range of language bindings to make a system facility useable. The 
system facility committee is more likely to have an interest in making the facilities accessible; furthermore, 
language committees might not have the necessary expertise to develop bindings to specialized facilities. 
Part of the primary responsibility is to respond to public comments. 

GUIDELINE 3 

Whichever committee is responsible for a particular binding, the other committee needs o be consulted as 
early as possible. The two committees have complementary responsibilities and concerns. 

A system facility committee is concerned with 

0 fidelity to the functional specification, including relevant level structures. 
l similarity of program structure independent of the programming languages. 

suitability of the system facility for binding to the various languages. 
A langiage committee is concerned with 

correctness of the binding definition, and adherence to good practice in the language, 
including the avoidance of obsolete and deprecated features. 
consistency in the binding of similar concepts in similar ways throughout different bindings 
(for example, ‘is a 2x3 matrix bound as a (3,2) array or a (2,3) array or a (6) array?’ is a question 
to be answered by a language committee). 

10 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993



OISOIIEC ISO/IEC TR 10182:1993(E) 

0 the needs of programmers accessing more than one system facility in one program. 
0 suitability of the language for various binding methods. 

Both committees are concerned with ease of use and orthogonality of concepts. 

GUIDELINE 4 

Specific guidelines should be produced alongside standards for particular system facilities and particular 
programming languages. 

0 A set of guidelines for producing language bindings for a system facility should be associated with 

0 
the standard functional specification of any system facility. 
A set of guidelines for producing language bindings of different system 
should be associated with the standard of any programming language. 

Potentially, there is an n x m problem of agreeing and processing n language 
facilities. Ideally, the development of appropriate guidelines should reduce the p 
n+m. 

acilities to a language 

bindings to m system 
oblem to one of order 

Binding guidelines could be published as appendices to standards, and in some cases a supplemental 
standard could be considered. Sample programs would also be helpful. Publication of such guidelines by 
language committees would help not only system facility committees, but also any producers of packages 
needing bindings to languages, and would thus help promote portability. 

GUIDELINE 5 

Draft proposals for bindings should not progress beyond the standardization stage of the system facility or 
the lanauaae. 

In addition, no system facility should progress to DIS (Draft International Standard) or IS (International 
Standard) until there is at least one language binding at or above the level of DP (Draft Proposed 
International Standard) or DIS, respectively. Users cannot fully judge a semantic standard without seeing 
the specific syntax which is their only access to it. Also, there are some difficulties with abstract semantics 
which are only revealed by the production of a language binding. Reference ISSUE 1: What should be the 
criteria for determining if the functio 
language? 

lal interface standard should be bound to a particular programming 

3.2 General Technical Guide ines 

This section contains guidelines that are general over all binding methods. 

GUIDELINE 6 

Language bindings to the same system facility should be similar in those respects where the languages 
are similar. 

A functional specification might have a system facility data type that is easily represented in some 
languages but not in others. For example, GKS uses points which can easily be represented as records in 
Pascal and Ada, but not in FORTRAN. It seems unreasonable for the Pascal and Ada bindings to be 
constrained by the FORTRAN binding. On the other hand, after language bindings for a few very dissimilar 
languages have been produced, bindings for additional languages might be produced by analogy. 

11 

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 10182:1993
https://standards.iteh.ai/catalog/standards/sist/45f0235d-cb8f-445d-b450-

cc8d2eafd4d9/iso-iec-tr-10182-1993


	k¹{�Kz	5°KÞcm‚¢eÊi»]˜Ðùîh;Å›ËŸv½T²>Njmp�³LNžSuß�}ß5Ç‹¸oKÿ��VCÑ·Úï£öﬁÈ“*o;q˛å�hç·m;„³�ˇEÁzœ¯@

