









## THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2011 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur. Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

#### About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications

• IEC Just Published: <u>www.iec.ch/online\_news/justpub</u> Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>
 If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00



Edition 1.0 2011-01

# **TECHNICAL** REPORT colour inside Dynamic modules -Part 6-5: Investigation of operating mechanical shock and vibration tests for dynamic modules

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

ICS 33.180.20

ISBN 978-2-88912-326-1

R

#### CONTENTS

| FO                                                              | REW                                                                                  | ORD                |                                                                                                                            | 4                   |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| 1                                                               | Scop                                                                                 | e                  |                                                                                                                            | 6                   |  |  |
| 2                                                               | Back                                                                                 | ground .           |                                                                                                                            | 6                   |  |  |
| 3                                                               | Que                                                                                  | stionnair          | e results in Japan                                                                                                         | 6                   |  |  |
| 4                                                               | Eval                                                                                 | uation pl          | an                                                                                                                         | 7                   |  |  |
| 5                                                               | Evaluation results                                                                   |                    |                                                                                                                            |                     |  |  |
|                                                                 | 5.1 Step 1                                                                           |                    |                                                                                                                            |                     |  |  |
|                                                                 |                                                                                      | 5.1.1              | Evaluation of hammer impact                                                                                                | 7                   |  |  |
|                                                                 |                                                                                      | 5.1.2              | Evaluation of adjacent board insertion and rack handlerimpact                                                              | 9                   |  |  |
|                                                                 | 5.2                                                                                  | Step 2             | ·····                                                                                                                      | 9                   |  |  |
|                                                                 | 5.3                                                                                  | Step 3             |                                                                                                                            | 11                  |  |  |
|                                                                 |                                                                                      | 5.3.1              | MEMS-VOA                                                                                                                   | 11                  |  |  |
| 6                                                               | Simi                                                                                 | 0.3.∠<br>Nation    | wss and tunable laser                                                                                                      | 14<br>16            |  |  |
| 0                                                               | 6 1                                                                                  |                    | tion model                                                                                                                 | 10                  |  |  |
|                                                                 | 6.2                                                                                  | Freque             |                                                                                                                            | 10                  |  |  |
|                                                                 | 6.3                                                                                  | Depend             | dence on board design                                                                                                      | 17                  |  |  |
|                                                                 | 6.4                                                                                  | Consis             | tency of evaluation and simulation results                                                                                 | 18                  |  |  |
| 7                                                               | Sum                                                                                  | mary               |                                                                                                                            | 19                  |  |  |
| 8                                                               | Cond                                                                                 | lusions.           |                                                                                                                            | 19                  |  |  |
|                                                                 |                                                                                      |                    | $\land \frown \land \land$ |                     |  |  |
| Fig                                                             | ure 1                                                                                | - Photos           | s of evaluating hammer impact, rack and boards                                                                             | 7                   |  |  |
| Fig                                                             | ure 2                                                                                | – Evalua           | ation results of hammer impact H                                                                                           | <sup>o-tr-</sup> .8 |  |  |
| Fig                                                             | ure 3                                                                                | – Photo            | s of evaluating adjacent board insertion and rack handle impact                                                            | 9                   |  |  |
| Fig                                                             | ure 4                                                                                | – DUT (            | VOA and WSS) installed on boards and rack for second step of the                                                           |                     |  |  |
| eva                                                             | luatio                                                                               | n                  |                                                                                                                            | 10                  |  |  |
| Fig                                                             | ure 5                                                                                | – Oscillo          | pscope display of waveform changes in vibration and optical output                                                         | 10                  |  |  |
| Fig                                                             | ure 6                                                                                | – Evalua           | ation results when employing MEMS-VOA for Z axis                                                                           | 11                  |  |  |
| Figure 7- Photos of the MEMS-VOA shock/vibration test equipment |                                                                                      |                    |                                                                                                                            |                     |  |  |
| Fig                                                             | ure 8                                                                                | – Opera            | tional shock characteristics of MEMS-VOA                                                                                   | 13                  |  |  |
| Fig                                                             | ure 9                                                                                | – Vibrat           | ion evaluation results for MEMS-VOA (Z axis; 2 G)                                                                          | 13                  |  |  |
| Fig                                                             | ure 10                                                                               | ) – Shoc           | k and vibration evaluation system for WSS and tunable laser                                                                | 14                  |  |  |
| Fig                                                             | ure 1                                                                                | 1 – Shoc           | k evaluation results for WSS (directional dependence)                                                                      | 15                  |  |  |
| Fig                                                             | Figure 12 – Shock evaluation results for WSS (z-axis direction and shock dependence) |                    |                                                                                                                            |                     |  |  |
| Fig                                                             | ure 1                                                                                | 3 – Simu           | lation model                                                                                                               | 16                  |  |  |
| Fig<br>≁ ∽                                                      | ure 14                                                                               | 4 – Vibra          | tion simulation results (Conditions: 1,6 mm $\times$ 240 mm $\times$ 220 mm,                                               | 17                  |  |  |
| Fig                                                             | ure 1                                                                                | 5 – Vibra          | ition simulation results (Dependence on board conditions)                                                                  | 18                  |  |  |
| Tak                                                             |                                                                                      | Deels              | nd board appoiliantions, conditions of avaluating however import, and                                                      |                     |  |  |
| aco                                                             | uirinc                                                                               | - rack a<br>i data | nu board specifications, conditions of evaluating nammer impact and                                                        | 8                   |  |  |
| Tab                                                             | ole 2 -                                                                              | - Dvnam            | ic modules used in evaluation and evaluation conditions                                                                    | 10                  |  |  |
| Tab                                                             | ole 3 -                                                                              | - Conditi          | ons for MEMS-VOA vibration/shock evaluation                                                                                | 12                  |  |  |

TR 62343-6-5 © IEC:2011(E)

| Table 5 – Conditions for simulating board shock and vibration                            | 16 |
|------------------------------------------------------------------------------------------|----|
| Table 6 – Comparison of hammer impact shock evaluation results and vibration             |    |
| simulation (Conditions: 1,6 mm $\times$ 240 mm $\times$ 220 mm, t $\times$ H $\times$ D) | 19 |



#### INTERNATIONAL ELECTROTECHNICAL COMMISSION

#### DYNAMIC MODULES -

#### Part 6-5: Investigation of operating mechanical shock and vibration tests for dynamic modules

#### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to VEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the sorrect application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62343-6-5, which is a technical report, has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

The text of this technical report is based on the following documents:

| Enquiry draft | Report on voting |
|---------------|------------------|
| 86C/943/DTR   | 86C/958/RVC      |

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of IEC 62343 series, published under the general title *Dynamic modules,* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

https://standards.iteh.a/cx

-3562-4bbf-87f4-6841508eecda/iec-tr

#### DYNAMIC MODULES -

#### Part 6-5: Investigation of operating mechanical shock and vibration tests for dynamic modules

#### 1 Scope

This part of IEC 62343, which is a technical report, explains an investigation of operating mechanical shock and a vibration test for dynamic modules. It also describes the results of a survey, evaluation and mechanical simulation of mechanical shock and vibration testing. This report covers a study of standardization for operating mechanical shock and vibration test methods.

#### 2 Background

The recent deployment of advanced, highly flexible optical communication networks using ROADM (reconfigurable optical add drop multiplexing) systems has been accompanied by putting dynamic wavelength dispersion compensators, wavelength blockers and wavelength selective switches to practical use as "dynamic modules." Since these dynamic modules incorporate such brand-new technology as MEMS (micro electromechanical systems), there are concerns about the vulnerability of MEMS to operational shock and vibration conditions, which urgently require establishing evaluation methods and conditions for operational shock and vibration. Standards for shock and vibration test conditions as pertaining to storage and transport are already established, but methods and conditions for evaluating operational shock and vibration are not yet established.

The JIS (Japanese Industrial Standards) committee consequently conducted a questionnaire survey on the shock and vibration testing of passive optical components and dynamic modules in commercial use. The survey revealed that many respondents confirmed a need to standardize evaluation conditions for operational shock and vibration, and some suggested earthquakes, harmers impact testing and inserting an adjacent board as cases of shock and vibration during dynamic module operation. Based on the survey results, the JIS committee evaluated such operational shock and vibration by conducting hammer impact tests using several dynamic modules, compared the results through simulation, and then recommended specific evaluation conditions.

This technical report is based on OITDA (Optoelectronic Industry and Technology Development Association) – TP (Technical Paper), TP05/SP\_DM-2008, "Investigation on operational vibration and mechanical impact test conditions for optical modules for telecom use."

#### 3 Questionnaire results in Japan

The JIS committee conducted a questionnaire on operational shock and vibration testing. The questionnaire allowed the respondents to specify the optical components to be tested. This questionnaire included optical switches, VOAs (variable optical attenuators) and tunable filters among the mechanical components used in all possible situations. The survey covered 18 organizations: eight Japanese manufacturers of mechanical optical components, eight device makers as users of such components, and two research institutes. Reponses were received from 14 of these organizations (for a response rate of 78 %), among which 12 respondents specified optical switches, seven specified VOAs and three chose tunable filters. In tabulating the data, the survey asked questions regarding these three types of components and described occurrences not dependent on the type of component, the manufacturer and the user, and evaluation conditions.

TR 62343-6-5 © IEC:2011(E)

The results revealed a strong need for the standardization of operational shock and vibration evaluation methods and conditions for such dynamic modules as optical switches and VOAs. A majority of respondents also requested that hammer impact testing and the insertion of an adjacent board be included as cases of operational shock and vibration.

#### 4 Evaluation plan

Based on the survey results described in Clause 3, the appropriate conditions for shock and vibration testing were determined based on an evaluation. The evaluation method consisted of the following three steps.

Step 1: Measure the shock and vibration characteristics of a board with a shock sensor inserted into a standard rack by striking the front face of the board with a hammer or by inserting an adjacent board.

Step 2: Test an optical module installed in a standard rack by repeating the procedure in Step 1. Measure any changes in the optical characteristics of the optical module.

Step 3: Use standard shock and vibration test equipment to reproduce the shock and vibration characteristics obtained in Step 1 and the optical characteristics of the optical module obtained in Step 2.

#### 5 Evaluation results

- 5.1 Step 1
- 5.1.1 Evaluation of hammer impact



IEC 126/11

#### Figure 1 – Photos of evaluating hammer impact, rack and boards

A board with a shock sensor attached is inserted into the rack. The front of the board is then struck repeatedly by a hammer, along with an adjacent board being forcibly inserted, in order to measure the impact and frequency detected by the shock sensor. The handles attached to the front edge of the rack are also forcibly struck by hand, with the impact being measured as well. Figure 1 shows photos of evaluating hammer impact, as well as the rack and boards. Table 1 summarizes the specifications of the rack and boards and the conditions of evaluating hammer impact and acquiring data.

### Table 1 – Rack and board specifications, conditions of evaluating hammer impact and acquiring data

| ltem                                    | Specifications / Conditions                                                                                                                                                                |                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Rack size                               | 432 mm (W) $\times$ 240 mm (D) $\times$ 262 mm (H)                                                                                                                                         |                 |
| Back connectors                         | 2 pins - 96 pins                                                                                                                                                                           |                 |
| Number of boards                        | 20                                                                                                                                                                                         |                 |
| Striking force (acceleration intensity) | H (1 800 m/s <sup>2</sup> to 2 400 m/s <sup>2</sup> ) ~ 210 G<br>M (1 200 m/s <sup>2</sup> to 1 600 m/s <sup>2</sup> ) ~ 140 G<br>L (300 m/s <sup>2</sup> to 400 m/s <sup>2</sup> ) ~ 35 G |                 |
| Places to strike                        | Top, middle of front panel of board                                                                                                                                                        |                 |
| Board thickness                         | 1,6 mm, 1,5 mm, 1,2 mm                                                                                                                                                                     |                 |
| Location of board                       | Centre, side                                                                                                                                                                               | $\overline{\ }$ |
| Number of board                         | One, full size                                                                                                                                                                             |                 |
| Directions                              | x, y, z                                                                                                                                                                                    | $\mathbf{S}$    |
| Data acquisition                        | 40 μs × 5 000 points (200 ms)                                                                                                                                                              |                 |
| Sensing frequency band                  | 10 Hz - 10 kHz                                                                                                                                                                             |                 |

Figure 2a) shows the measurement results. Here, H denotes a high level of hammer impact (at 210 G). The location of impact is at the centre on the front face of a board 1,6 mm thick, located at the centre of the 20 boards installed, with data being acquired on tests repeated 11 times. Figure 2b) shows the Fourier transform results of data based on the frequency component.





The results show vibration time in the range of 100 ms to 200 ms, with vibration amplitude descending in order of z axis > x axis > y axis. The peak shock (initial pulse) was 5 G to 10 G (in 2 ms to 5 ms). In contrast, Fourier transform results show a number of vibration

TR 62343-6-5 © IEC:2011(E)

peaks (at 100 Hz, 250 Hz and more than 1 kHz). The largest peak was at 220 Hz to 280 Hz. For the z axis, the peak pulse intensity was roughly 0,5 G. Here, the strongest impact was in the z axis, despite the fact that shock had been applied to the x axis. This is believed to be the result of drum vibrations on the board. The results of hammer impacts M and L (at 2,6 G to 4 G and 0,9 G to 1,5 G, respectively) show the almost same frequency spectra and peak amplitude for the z axis.

Next, the dependence on each evaluation condition (e.g., board thickness, board installation location, number of boards installed) was examined. The evaluation showed no significant difference in any of the evaluation conditions. Regarding the dependence on hammer impact strength, the peak shock roughly correlated to impact strength. A small peak of 70 Hz was seen in the y axis for hammer impact L. For the dependence on board thickness, there were two peaks in the x axis at thickness of 1,2 mm. The peak also moved slightly to the lower frequency in the z axis. No difference could be detected in terms of location of board installation and board impact.

#### 5.1.2 Evaluation of adjacent board insertion and rack handle impact

In addition to evaluating hammer impact, tests were also conducted to evaluate the insertion of an adjacent board and impact on the handle on the front side of the rack. Figure 3 shows photos of the evaluation tests.



Figure 3 – Photos of evaluating adjacent board insertion and rack handle impact

An analysis of data compared the peak amplitudes in the z axis on the graph showing vibration attenuation before Fourier transformation. This analysis revealed that peak shock for the z axis was 5,2 G to 6 G for the adjacent board insertion test (similar to the result for hammer impact H) and 1 G to 1,4 G for the rack handle impact test (similar to the result for hammer impact L).

An examination of some data on the frequency characteristics after Fourier transformation did not reveal significant differences from the evaluation of hammer impact.

#### 5.2 Step 2

In Step 2, a dynamic module was attached to a board for which the shock sensor monitors shock and vibration, identical to the approach in Step 1. At the same time, any changes in optical characteristics (loss) were monitored. Figure 4 shows photos of the board with the VOA and the rack with WSS (wavelength-selective switch) attached on the boards.