INTERNATIONAL STANDARD

First edition 1997-12-15

Copper, lead and zinc sulfide concentrates — Determination of mass loss of bulk material on drying

Concentrés sulfurés de cuivre, de plomb et de zinc — Détermination de la perte de masse au séchage du matériau en vrac

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10251:1997 https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10251 was prepared by Technical Committee ISO/TC 183, *Copper, lead and zinc ores and concentrates.*

Annexes A and B form an integral part of this International Standard. Annex C is for information only. (standards.iteh.ai)

ISO 10251:1997 https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Introduction

Reference to the percentage mass loss as moisture content is appropriate, because, although oxidation, decomposition or sublimation of elemental sulfur may contribute, most of the mass loss on drying is due to loss of moisture.

When oxidation, decomposition or sublimation of elemental sulfur has been shown to occur or volatile organic flotation reagents such as kerosene are present, the chemical analysis test sample should be prepared from the dried moisture test portions. Under these circumstances, the sampling scheme established in accordance with ISO 12743 must ensure that moisture samples and test portions are sufficiently representative for subsequent chemical analysis. When oxidation is a problem, an inert atmosphere may also be used during the drying stage. Annex A provides a procedure by which it can be determined whether or not a concentrate is susceptible to oxidation, decomposition or sublimation.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10251:1997 https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10251:1997 https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

Copper, lead and zinc sulfide concentrates — Determination of mass loss of bulk material on drying

1 Scope

This International Standard specifies methods for the determination of moisture content of a lot of copper, lead or zinc sulfide concentrate, defined as the percentage mass loss of the moisture test portion under the conditions of drying specified in this document.

NOTE 1 In order to obtain an unbiased estimate of the metal content of the lot, it is important that the same drying conditions are used for the determination of bulk and hygroscopic moisture or for preparing a predried test portion.

This International Standard is not applicable to drying samples used for determination of volatile elements such as mercury and sulfur. Such samples are allowed to dry at ambient temperature and a hygroscopic moisture determination is carried out in accordance with ISO 9599 at the time of chemical analysis.

iTeh STANDARD PREVIEW (standards.iteh.ai)

2 Normative references

The following standards contain provisions which <u>Sthrough refe</u>rence in this text, constitute provisions of this International Standard <u>standard standard </u>

ISO 9599: 1991, Copper lead and zinc sulfide concentrates — Determination of hygroscopic moisture in the analysis sample — Gravimetric method.

ISO 12743:—¹), Copper, lead and zinc sulfide concentrates — Sampling procedures for determination of metal and moisture content.

3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 representative sample: A quantity of concentrate representing a larger mass of concentrate with both precision and bias within acceptable limits.

3.2 lot: A quantity of concentrate to be sampled.

3.3 lot sample: A quantity of concentrate which is representative of the lot.

¹⁾ To be published.

3.4 sub-lot: Subdivided parts of a lot which are processed separately, each of them producing a subsample which is analysed separately, e.g. for moisture determination.

3.5 subsample: A quantity of concentrate which is representative of the sub-lot.

3.6 increment: A quantity of concentrate selected by a sampling device in one operation.

3.7 moisture sample: A representative quantity of concentrate from which test portions are taken for moisture determination.

NOTE 2 Alternatively, the whole moisture sample may be dried to determine its moisture content.

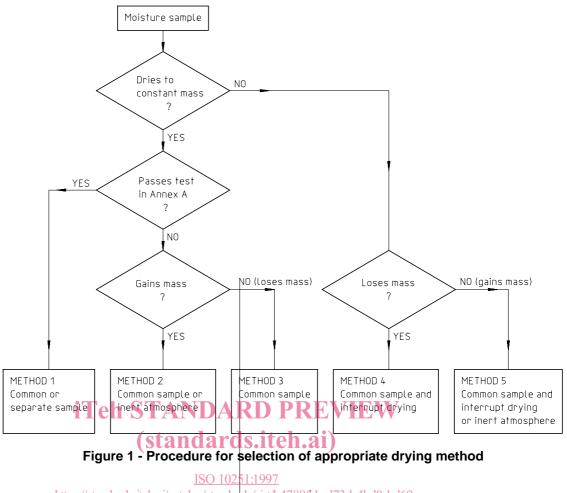
3.8 laboratory sample: A sample that is processed so that it can be sent to the laboratory and used for further processing and selection of one or more test samples for chemical analysis.

3.9 common sample: A representative quantity of concentrate that is dried to determine its mass loss and subsequently used for further processing and selection of one or more test samples for chemical analysis.

3.10 test sample: A representative quantity of concentrate obtained for a laboratory sample when additional preparation, such as drying or hygroscopic moisture determination, is needed prior to selection of one or more test portions.

3.11 test portion: A representative quantity of concentrate taken from a moisture sample, a laboratory sample or a test sample which is submitted to moisture determination or analysis in its entirety.

(standards.iteh.ai)


4 Drying method

<u>ISO 10251:1997</u>

4.1 General https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

Test portions are dried at 105 °C \pm 5 °C until constant mass is obtained and the moisture content determined as the percentage mass loss on drying. However, drying to constant mass can be difficult or impossible if the concentrate is susceptible to oxidation, decomposition or sublimation of elemental sulfur or volatile organic flotation reagents such as kerosene are present (see annex A). Under these circumstances, a common sample for moisture determination and chemical analysis, drying in an inert atmosphere, or interruption of drying is applied. If a common sample is used, the moisture samples and test portions must be sufficiently representative for subsequent chemical analysis.

One of the following drying methods is selected to suit the particular concentrate. A flowsheet for selecting the correct drying method is given in figure 1.

4.2 Method 1 https://standards.iteh.ai/catalog/standards/sist/b4788fbb-d73d-4bd0-bd69fd2d46b63d96/iso-10251-1997

Where the test portion can be dried to constant mass and the concentrate passes the test in annex A, a separate sample for moisture determination or a common sample is dried to constant mass.

4.3 Method 2

Where the test portion can be dried to constant mass, but the test in annex A results in a higher mass, indicating that the concentrate is susceptible to oxidation, moisture and chemical analysis samples are dried to constant mass in an inert atmosphere, or a common sample is dried to constant mass.

4.4 Method 3

Where the test portion can be dried to constant mass, but the test in annex A results in a lower mass, indicating that the concentrate may be losing organics over an extended period, a common sample is dried to constant mass.

4.5 Method 4

Where the test portion cannot be dried to constant mass and continues to lose mass over long periods, indicating that the concentrate may be losing hydrated water, decomposing or subliming, a common sample is used, with interruption of drying after a period determined in accordance with clause 8 for each concentrate type and no further drying prior to analysis.

Where the test portion cannot be dried to constant mass and after the initial drying period continues to gain mass, indicating that the concentrate may be oxidizing even when dry, moisture and chemical analysis samples are dried to constant mass in an inert atmosphere, or a common sample is used with interruption of drying after a period determined in accordance with clause 8 for each concentrate type and no further drying prior to analysis.

5 Apparatus

5.1 Drying oven, ventilated, with forced circulation of air or inert gas, regulated at a temperature of $105 \text{ }^{\circ}\text{C} \pm 5 \text{ }^{\circ}\text{C}$.

5.2 Top-loading balance, having a minimum precision of 0,01 % as specified in table 1.

5.3 Drying trays, having dimensions that permit the sample to be spread to a thickness of less than 30 mm. The trays shall be made of corrosion-resistant and heat-resistant material such as stainless steel, glass or enamel plate.

Table 1 - Mass of sample and minimum precision and weighing

ka	NDA Minimum precision of balance and weighing ndards.iteh.aig
1	0,1
2	<u>ISO 10251:1997</u> 0,2
5 https://standards.iteh.ai/ca	talog/standards/sist/b4788fbbQ33d-4bd0-bd69-
10 fd20	146b63d96/iso-10251-1997
20	2
50	5

NOTE 3 The weighing platform should be protected from heat transfer by a suitable insulating material, e.g. a 13 mm layer of polystyrene.

6 Processing of samples

Samples for moisture determination shall be taken and processed in accordance with ISO 12743.

If the concentrate is cohesive or excessively wet, the sample may be predried until sample preparation can be conducted without difficulty. The predried moisture content and the total moisture content of the sample shall be determined by the procedure specified in annex B.

7 Samples for moisture determination

7.1 General

Samples for moisture determination shall be taken as close to the point (position and time) of mass determination as practicable. Samples shall then be prepared and the test portions weighed immediately to minimize bias.

Breaking up of agglomerates by screening is not permitted, because this will result in a change in moisture content.

NOTE 4 If agglomerates are present, the minimum mass of the test portion specified in 7.2, 7.3 and 7.4 or the number of moisture determinations may have to be increased to obtain the required precision.

7.2 From a single lot sample

Where a single lot sample is obtained from a lot, four test portions of not less than 1 kg shall be taken as specified in table 2 and two of these shall be submitted initially for the determination of moisture content. The two reserve test portions shall be weighed in accordance with the procedure specified in clause 8 and set aside on a covered tray.

Type of sample	Anumber of test portions tandards.iteh.ai)	Number of subsamples per lot
Lot sample	4	-
Subsample	ISO 10251 2 1997	2 to 3
https://standards.iteh	ai/catalog/standards/sist/b4788fbb-d73	1-4bd0-bd69- ≥ 4
Increment	fd2d46b63d96/iso-10251-1997	-

Table 2 - Minimum number of test portions for moisture determination

7.3 From subsamples

Where subsamples from a lot are not combined into a single lot sample, the minimum number of test portions specified in table 2 shall be taken from each subsample and submitted for the determination of moisture content. Each test portion shall be not less than 1 kg in mass.

Where a subsample is prepared from each sub-lot, the mass of each sub-lot shall be recorded at the same time for calculation of the moisture content of the lot.

7.4 From increments

Where moisture determination is conducted on each increment, one test portion of not less than 1 kg shall be taken from each increment as specified in table 2 and submitted for the determination of moisture content.

The mass of each stratum shall be recorded at the same time for calculation of the moisture content of the lot.