

Edition 1.0 2010-02

INTERNATIONAL STANDARD

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2010 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

• IEC Just Published: <u>www.iec.ch/online_news/justpub</u> Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

• Customer Service Centre: <u>www.iec.ch/webstore/custserv</u> If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch https:Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

b-fbdc-4228-9452-51f554ea87df/iec-62439-2-2010

Edition 1.0 2010-02

INTERNATIONAL STANDARD

Industrial communication networks – High availability automation networks – Part 2: Media Redundancy Protocol (MRP)

https://standards.iteh.a

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XB

ICS 25.040, 35.040

ISBN 978-2-88910-705-6

CONTENTS

FO	OREWORD					
IN	NTRODUCTION					
1	Scope					
2	Normative references			8		
3 Terms, definitions, abbreviations, acronyms, and conventions			itions, abbreviations, acronyms, and conventions	8		
	3.1		and definitions			
	3.2		<i>r</i> iations and acronyms			
	3.3		ntions			
4			эм	_		
5 MRP Media redundancy behavior				10		
Ū	5.1			10		
	5.2		Redundancy Manager (MRM)	-		
	5.3		Redundancy Client (MRC)			
	5.4			12		
	5.5	Usage	dancy domain with diagnosis and alarms	12		
	5.6	Rina di	iagnosis	13		
	5.7	Multiple	e MRM in a single ring	13		
	5.8	BLOCK	(ED not supported (option)			
6	MRP	Class s	pecification	14		
	6.1		a (https://stands.co. iteh.ai)			
	6.2					
	6.3		ate	14		
7	MRP		specification			
	7.1		IRM F 62,210,2:2010	17		
	7.2	<	RM and standards en 120367b-fbde-4228-9452-51f554ea87df/iec-62			
	7.3	•	Change	19		
	7.4	Start M		20		
	7.5	Stop M		21		
	7.6	Read N		22		
	7.7 <	Read	MRC	24		
8 MRP protocol specification			specification	25		
	8.1	PDU de	escription	25		
		8.1.1	Basic data types			
		8.1.2	DLPDU abstract syntax reference	25		
		8.1.3	Coding of the DLPDU field SourceAddress	26		
		8.1.4	Coding of the DLPDU field DestinationAddress	26		
		8.1.5	Coding of the field TagControlInformation	27		
		8.1.6	Coding of the field LT	27		
		8.1.7	MRP APDU abstract syntax	27		
		8.1.8	Coding of the field MRP_TLVHeader	28		
		8.1.9	Coding of the field MRP_Version	29		
		8.1.10	Coding of the field MRP_SequenceID	29		
		8.1.11	Coding of the field MRP_SA	29		
		8.1.12	Coding of the field MRP_Prio	29		
			Coding of the field MRP_PortRole			
		8.1.14	Coding of the field MRP_RingState	29		

			8.1.15	Coding of the field MRP_Interval	30		
			8.1.16	Coding of the field MRP_Transition	30		
			8.1.17	Coding of the field MRP_TimeStamp	30		
			8.1.18	Coding of the field MRP_Blocked	30		
				Coding of the field MRP_ManufacturerOUI			
				Coding of the field MRP_ManufacturerData			
				Coding of the field MRP_DomainUUID			
8.2 Protocol machines							
				MRM protocol machine			
				MRC protocol machine			
				MRM and MRC functions			
				FDB clear timer			
					51		
	9 MRP installation, configuration and repair						
		9.1	Ring po	ort parameters			
		9.2		pology parameters			
		9.3	MRM pa	arameters			
		9.4	MRC pa	arameters and constraints			
		9.5	Calcula	tion of MRP ring recovery time			
				Overview			
				Deduction of formula			
				Worst case calculation for recovery time of 10 ms			
	10			Worst case calculation for 50 devices			
	10 MRP Management Information Base (MIB)						
		-	General				
				IB with a monitoring view			
	Dib			B with a management and monitoring view			
	DID	llogra	pny		2.775-2010		
				$\land \land \land \land \land \land \land$			
	0		– MRP s				
				ing topology with one manager and clients			
	Fig	ure 🏹	– MRP o	pen ring with MRM	11		
	Fig	ure 4	– MRP ni	ing with more than one MRM	13		
	Fig	ure 5	– MRP p	rotocol machine for MRM	32		
	Fia	ure 6	– MRP p	rotocol machine for MRC	42		
	Tak	1 – 1 –	. MRP St	art MRM	17		
				top MRM			
				hange State			
				art MRC			
	Tab	ole 5 –	- MRP St	top MRC	21		
	Tab	ole 6 –	MRP Re	ead MRM	22		
	Table 7 – MRP Read MRC 24						
	Table 8 – MRP DLPDU syntax for ISO/IEC 8802-3 (IEEE 802.3)						
				MulticastMACAddress			
	. ut		ivii ii				

Table 11 – MRP TagControlInformation.Priority field	
Table 12 – MRP LT field	
Table 13 – MRP APDU syntax	
Table 14 – MRP Substitutions	
Table 15 – MRP_TLVHeader.Type28	
Table 16 – MRP_Version	
Table 17 – MRP_Prio29	
Table 18 – MRP_PortRole	
Table 19 – MRP_RingState	
Table 20 – MRP_Interval	
Table 21 – MRP_Transition	
Table 22 – MRP_TimeStamp 30	
Table 23 – MRP_Blocked	
Table 24 – MRP_DomainUUID	
Table 25 – MRP Local variables of MRM protocol machine 33	
Table 26 – MRM State machine 34	
Table 27 – MRP Local variables of MRC protocol machine 43	
Table 28 – MRC state machine	
Table 29 – MRP functions 49	
Table 30 – MRP FDB clear timer	
Table 31 – MRP topology change timer	
Table 32 – MRP Network/Connection parameters	
Table 33 – MRP MRM parameters 52	
Table 34 – MRP MRC parameters	
:://standards.iteh.a.c.talog/standards/ec/997a367b-fbdc-4228-9452-51f554ea87df/iec-62439-2-2	
$\bigwedge \setminus \setminus \bigvee \bigvee$	

1

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 2: Media Redundancy Protocol (MRP)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies: 2,2,0110
- https:/6) All users should ensure that they have the latest edition of this publication. 52-51:554ea87df/iec-62439-2-2010
 - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

International Standard 62439-2 has been prepared by subcommittee 65C: Industrial Networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This standard cancels and replaces IEC 62439 published in 2008. This first edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to IEC 62439 (2008):

- adding a calculation method for RSTP (rapid spanning tree protocol, IEEE 802.1Q),
- adding two new redundancy protocols: HSR (High-availability Seamless Redundancy) and DRP (Distributed Redundancy Protocol),
- moving former Clauses 1 to 4 (introduction, definitions, general aspects) and the Annexes (taxonomy, availability calculation) to IEC 62439-1, which serves now as a base for the other documents,
- moving Clause 5 (MRP) to IEC 62439-2 with minor editorial changes,
- moving Clause 6 (PRP) was to IEC 62439-3 with minor editorial changes,
- moving Clause 7 (CRP) was to IEC 62439-4 with minor editorial changes, and

- moving Clause 8 (BRP) was to IEC 62439-5 with minor editorial changes,
- adding a method to calculate the maximum recovery time of RSTP in a restricted configuration (ring) to IEC 62439-1 as Clause 8,
- adding specifications of the HSR (High-availability Seamless Redundancy) protocol, which shares the principles of PRP to IEC 62439-3 as Clause 5, and
- introducing the DRP protocol as IEC 62439-6.

The text of this standard is based on the following documents:

FDIS	Report on voting
65C/583/FDIS	65C/589/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This International Standard is to be read in conjunction with IEC 62439-1:2010, Industrial communication networks – High availability automation networks – Part 1: General concepts and calculation methods.

A list of the IEC 62439 series can be found, under the general title Industrial communication networks – High availability automation networks, on the JEC website.

This publication has been drafted in accordance with ISONEC Directives, Part 2.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

• reconfirmed,

https://stawithdrawn,

- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

INTRODUCTION

The IEC 62439 series specifies relevant principles for high availability networks that meet the requirements for industrial automation networks.

In the fault-free state of the network, the protocols of the IEC 62439 series provide ISO/IEC 8802-3 (IEEE 802.3) compatible, reliable data communication, and preserve determinism of real-time data communication. In cases of fault, removal, and insertion of a component, they provide deterministic recovery times.

These protocols retain fully the typical Ethernet communication capabilities as used in the office world, so that the software involved remains applicable.

The market is in need of several network solutions, each with different performance characteristics and functional capabilities, matching diverse application requirements. These solutions support different redundancy topologies and mechanisms which are introduced in IEC 62439-1 and specified in the other Parts of the IEC 62439 series. IEC 62439-1 also distinguishes between the different solutions, giving guidance to the user.

The IEC 62439 series follows the general structure and terms of IEC 61158 series.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of a patent concerning ring protocol given in Clause 5.

IEC takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the JEC that he/she is willing to negotiate licences either free of charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with JEC. Information may be obtained from:

Siemens AG A&D

Gleiwitzerstr. 555

Nürnberg 90475

Germany

and

Hirschmann Automation and Control GmbH

Stuttgarter Strasse 45-51

Neckartenzlingen 72654

Germany

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://www.iec.ch/tctools/patent_decl.htm) maintain online data bases of patents relevant to their standards. Users are encouraged to consult the data bases for the most up to date information concerning patents.

INDUSTRIAL COMMUNICATION NETWORKS – HIGH AVAILABILITY AUTOMATION NETWORKS –

Part 2: Media Redundancy Protocol (MRP)

1 Scope

The IEC 62439 series is applicable to high-availability automation networks based on the ISO/IEC 8802-3 (IEEE 802.3) (Ethernet) technology.

This part of the IEC 62439 series specifies a recovery protocol based on a ring topology, designed to react deterministically on a single failure of an inter-switch link or switch in the network, under the control of a dedicated media redundancy manager node.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-191:1990, International Electrotechnical Vocabulary – Chapter 191: Dependability and quality of service

IEC 61158-6-10, Industrial communication networks – Fieldbus specifications – Part 6-10: Application layer protocol specification – Type 10 elements

IEC 62439-1:2010, Industrial communication networks – High availability automation networks – Part 1: General concepts and calculation methods

ISO/IEC 8802-3:2000, Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications

IEEE 802.1Q, IEEE standards for local and metropolitan area network. Virtual bridged local area networks

IEEE 802.1D:2004, *IEEE standard for local Local and metropolitan area networks Media* Access Control (MAC) Bridges

3 Terms, definitions, abbreviations, acronyms, and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-191, as well as in IEC 62439-1, apply.

3.2 Abbreviations and acronyms

For the purposes of this document, the abbreviations and acronyms given in IEC 62439-1 apply, in addition to the following.

MRC Media Redundancy Client

62439-2 © IEC:2010(E)

MRM Media Redundancy Manager

MRP Media Redundancy Protocol

3.3 Conventions

This document follows the conventions defined in IEC 62439-1.

4 MRP Overview

The Media Redundancy Protocol (MRP) specifies a recovery protocol based on a ring topology.

MRP is designed to react deterministically on a single failure of an inter-switch link or switch in the network.

MRP is based on functions of ISO/IEC 8802-3 (IEEE 802.3) and IEEE 802.1D including the Filtering Data Base (FDB) and is located between the Data Link Layer and Application Layer (see Figure 1).

NOTE 1 Layering is assumed to be according to IEC 61158-1.

A compliant network shall have a ring topology with multiple nodes.

One of the nodes has the role of a media redundancy manager (MRM). The function of the MRM is to observe and to control the ring topology in order to react on network faults. The MRM does this by sending frames on one ring port over the ring and receiving them from the ring over its other ring port, and vice-versa in the other direction.

The other nodes in the ring have the role of media redundancy clients (MRC). An MRC reacts on received reconfiguration frames from the MRM and can detect and signal link changes on its ring ports.

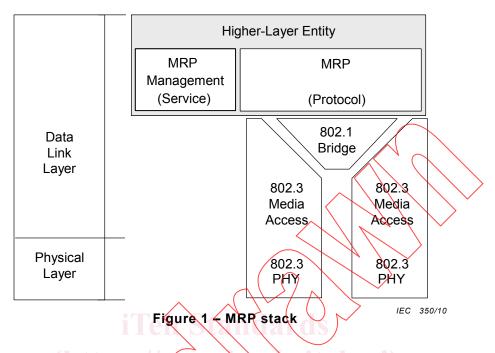
A compliant node shall have the ability to perform as one of the following:

- media redundancy manager (MRM),
- media redundancy client (MRC), or
- both MRM and MRC (but both roles shall not be active at the same time).

Each MRP compliant node requires a switch element with two ring ports connected to the ring.

NOTE 2 Additional ring ports may be used to connect to another ring.

Each node in the ring is able to detect the failure or recovery of an inter-switch link or the failure or recovery of a neighboring node (see 5.1).


The MRP consists of a service and a protocol entity, see stack model in Figure 1.

The service entity specifies, in an abstract way, the externally visible service provided by the Data Link Layer in terms of:

- primitive actions and events of the service,
- parameters associated with each primitive action and event, and the form which they take, and
- interrelationship between these actions and events, and their valid sequences.

MRP defines the services provided to

- the Application Layer at the boundary between the Application Layer and the Data Link Layer, and
- the MRP Management at the boundary between the Data Link Layer and the MRP Management.

5 MRP Media redundancy behavior

5.1 Ring ports

The MRM and the MRC shall have two ring ports.

2239-2:2010

The MRM and MRC shall be able to detect the failure or recovery of a link on a ring port with _____ mechanisms based on ISO/IEC 8802-3 (IEEE 802.3).

The MRM and MRC shall not forward MRP_Test frames, MRP_TopologyChange frames, and MRP_LinkChange frames to non-ring ports.

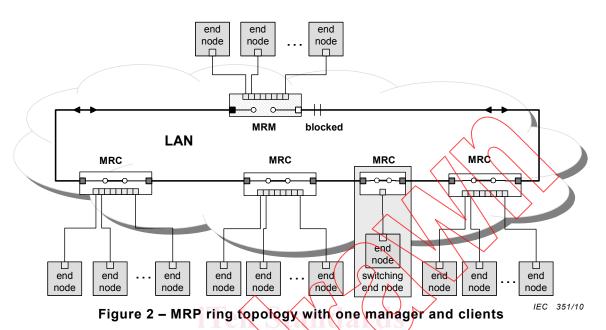
A ring port shall take one of the following port states:

• DISABLED:

All frames shall be dropped.

BLOCKED:

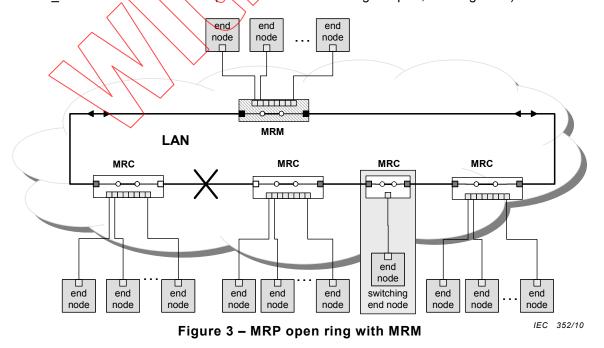
All frames shall be dropped except the following:


- MRP_TopologyChange frames and MRP_Test frames.
- MRP_LinkChange frames from an MRC.
- Frames specified in IEEE 802.1D (2004) Table 7-10 to pass ports in "Discarding" state (e.g. LLDP, IEC 61588 (IEEE 1588) PTP).
- Frames only produced or consumed by the higher layer entities of this node and never forwarded.
- FORWARDING:

All frames shall be passed through according to the forwarding behavior of IEEE 802.1D.

NOTE IEEE 802.1D refers to the port state corresponding to BLOCKED as "Discarding".

5.2 Media Redundancy Manager (MRM)


The first ring port of the MRM shall be connected to a ring port of an MRC. The other ring port of that MRC shall be connected to a ring port of another MRC or to the second ring port of the MRM, thereby forming a ring topology as shown in Figure 2.

The MRM shall control the ring state by:

- sending MRP_Test frames at a configured time period in both directions of the ring;
- setting one ring port in FORWARDING state and the other ring port in BLOCKED state if it receives its own MRP_Test frames (this means that the ring is closed, see Figure 2);

 setting both ring ports in FORWARDING state if it does not receive its own MRP_Test frames within a configured time according to MRP_TSTdefaultT, MRP_TSTshortT and MRP_TSTNRmax in Table 33 (this means that the ring is open, see Figure 3).

The following mechanism supports synchronization between MRM and MRC in ring topology changes.

The MRM shall indicate changes in the ring state to the MRCs by means of MRP_TopologyChange frames.

The MRM shall not forward MRP specific frames (MRP_Test frames, MRP_TopologyChange frames, MRP_LinkChange frames) between its ring ports.

If the MRM receives an MRP_LinkUp or MRP_LinkDown frame, then the MRM shall reduce its test monitoring time according to Table 33 to accelerate the detection of the open ring. When the open ring is detected then the MRM shall send the MRP_TopologyChange frames through both its ring ports.

Optionally the MRM shall send the MRP_TopologyChange frames through its ring ports. This option is selected by setting the parameter REACT ON LINK CHANGE, see Table 26.

The MRM shall send to the MRCs an MRP_TopologyChange frame with the delay, after which the ring topology change will be performed. The parameter carrying this delay is called MRP_Interval. When this time has expired, all MRCs shall clear their filtering database (FDB).

Each MRC shall send the configured delay in MRP_Interval to the MRM in the MRP_LinkUp and MRP_LinkDown frames to tell the MRM after which time the MRC will change its port state from BLOCKED to FORWARDING (MRP_LinkUp frame) or to DISABLED (MRP_LinkDown frame).

Measures shall be included to prevent the MRM from remaining stuck in the closed state in case of node failure.

5.3 Media Redundancy Client (MRC)

Each MRC shall forward MRP_Test frames received on one ring port to the other ring port and vice versa.

If the MRC detects a failure or recovery of a ring port link, the MRC may optionally notify the https://change by sending MRP_LinkChange frames through both of its ring ports. Each MRC shall 2010 forward MRP_LinkChange frames received on one ring port to the other ring port and vice versa.

Each MRC shall forward MRP_TopologyChange frames received on one ring port to the other ring port and vice versa Each MRC shall process these frames. It shall clear its FDB if requested by an MRP_TopologyChange frame in a given time interval (see Table 33, MRP_TOPchgT).

5.4 Redundancy domain

The redundancy domain represents a ring. By default, all MRM and MRCs belong to the default domain. A unique domain ID can be allocated as a key attribute, especially if an MRM or an MRC is member of multiple rings. A node shall assign exactly two unique ring ports per redundancy domain.

NOTE 1 A device may have other ports than the two assigned to MRP. These other ports are not influenced by MRP.

NOTE 2 MRP ports should behave as if RSTP is disabled.

5.5 Usage with diagnosis and alarms

If the attribute Check Media Redundancy has the value TRUE, media redundancy events shall cause diagnosis events and alarm notifications.