INTERNATIONAL STANDARD

First edition 1995-02-15

Aircraft — Certified aircraft container for air cargo — Specification and testing

iTeh Széronefs D Conteneurs certifiés pour le fret aérien — Spécification et essais (standards.iteh.ai)

<u>ISO 10327:1995</u> https://standards.iteh.ai/catalog/standards/sist/c70d6110-04ae-41d8-8663da976cba453e/iso-10327-1995

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIR W a vote.

International Standard ISO 10327 was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 9, Air cargo and ground equipment. ISO 1032 https://standards.iteh.ai/catalog/standards/sist/c70d6110-04ae-41d8-8663-

da976cba453e/iso-10327-1995

© ISO 1995

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

© ISO

For the purpose of this International Standard the minimum essential criteria are identified by use of the key word "shall". Other recommended criteria are identified by the key word "should", and while not mandatory, are considered to be of primary importance in providing serviceable, economical, and practical air transport containers. Deviation from recommended criteria should occur only after careful consideration, extensive testing and thorough service evaluation have shown alternative methods to be satisfactory.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10327:1995</u> https://standards.iteh.ai/catalog/standards/sist/c70d6110-04ae-41d8-8663da976cba453e/iso-10327-1995

iTeh STANDARD PREVIEW This page intentionally left blank:

<u>ISO 10327:1995</u> https://standards.iteh.ai/catalog/standards/sist/c70d6110-04ae-41d8-8663da976cba453e/iso-10327-1995

Aircraft — Certified aircraft container for air cargo — Specification and testing

1 Scope

This International Standard specifies the basic requirements for the specification and testing of containers that have the nominal base sizes shown in table 1. ISO 4116:1986, Air cargo equipment — Ground equipment requirements for compatibility with aircraft unit load devices.

ISO 4171:1993, Air cargo equipment — Interline pallets.

ISO 7166:1985, Aircraft — Rail and stud configuration **Table 1 Configuration Table 1 Configuration Table 1 Configuration Table 1 Configuration Table 1 Configuration Co**

Size code of the base in accordance with ISO 8097	Contair mm	er size (standar in ISO 10	ds.i [SO 8097:1993, Aircraft — Minimum airworthiness requirements and test conditions for certified air cargo unit load devices. 327:1995
А	2 235 × 3 175	ls.iteh ai/catabo/stand 88 × 125/stand	ards/sist(SOd112424acm11Airchaft — Pressure equalization re-
М	2 438 × 3 175	96 × 125	so roguirements for cargo container.
В	2 235 × 2 743	88 × 108	IATA, ULD Technical Manual, 8th edition. ²⁾

It provides minimum requirements for a certified aircraft container not exclusively designed for lower deck and wide body aircraft.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

3.1 Construction

The base shall be enclosed on all four sides by an aluminium extrusion. The corners' integrity with the edges shall be a prime concern. The corner radius shall be 50,8 mm (2 in). The base shall not contain rough or sharp edges potentially dangerous to personnel, cargo, airplane or terminal handling equipment. The construction of the base shall be designed for strength and durability, to withstand harsh treatment in service. The base shall be structurally attached to, and an integral part of, the container assembly. The base shall be removable with hand tools and shall be interchangeable.

³ Base

¹⁾ To be published.

Available from International Air Transport Association, 2000 Peel Street, Montreal, Canada H3A 2R4 or Route de l'Aéroport
Case postale 672, 1215 Geneva 15, Switzerland.

© ISO

The base shall comply with the performance criteria specified in ISO 4171.

3.2 Strength

The minimum core stiffness shall be 429 $N \cdot m^2/m$ (3 800 lbf·in²/in) width/length of core.

4 Superstructure

4.1 Contours

The contour shall conform with the maximum allowable ULD contour. All dimensions shown are external maximum dimensions and provide minimum acceptable airplane clearance (see figure 1). Any deviation or tolerance shall be to the low side to prevent reduction of clearance.

The maximum allowable ULD contours are shown in the IATA *ULD Technical Manual,* Specification 50/0, Appendix E.

in accordance with ISO 4116 [stops and guides 102 mm (4 in) high].

4.3.2 Door operation

It shall be possible for one man to open or close the door and any associated net or hardware in no more than one minute.

4.3.3 Door handles, straps and hand holds

Handles, straps or hand holds shall be provided on each door for handling the door, and these devices shall be suitable for gripping with a gloved hand.

They shall be designed so that they can cause no damage to adjacent units.

4.3.4 Door latches and restraint attachments

Door latch and restraint hardware design shall preclude damage to shell or door during door stowage and installation/removal with no special attention.

4.2 Fittings and components Teh STANDA or latches. REVIEW

4.2.1 Handles and straps

(standard.3.st Booradcking

Two flush handles or straps shall be provided for SO 1012 shalls be possible to lock (discourage entry) and seal manual movement of the container. Each handle shall shall grandathe door so as to give visual indications of unauthor-provide space suitable for gripping with a gloved handle shall at 32 ized (entry).995 and shall have a capacity of 445 daN (1 000 lbf) pull

in any direction.

4.2.2 Cargo restraint

Securing points shall be provided around the interior walls spaced approximately 500 mm (approximately 20 in) from the base. Each of these points alone shall be capable of reacting an omni-directional load of 2 225 daN (5 000 lbf).

These points shall comply with ISO 7166.

4.2.3 Components

Component parts and panel assemblies shall be replaceable by interchange with new or repaired ones.

4.3 Doors

4.3.1 Doors — Loading access

The door should be designed to make a maximum possible internal cross-section available for loading and shall assure no interference of the door and/or latches, and/or door hardware with ground equipment

4.3.6 Door sealing (water)

Particular design attention should be given to prevention of water intrusion through door-to-container assembly interface areas.

4.4 Pressure equalization

The container design shall comply with the specifications of ISO 11242.

4.4.1 Normal flight conditions

Where closing of the door does not allow for sufficient air circulation between the interior and the exterior of the container, a vent area of $5 \text{ cm}^2/\text{m}^3$ (0,02 in²/ft³) of container useful volume should be provided. This vent area shall be protected in order to obviate any risk due to cargo load shift likely to be encountered during normal flight conditions.

4.4.2 Emergency conditions

A minimum opening area in case of rapid decompression of $100 \text{ cm}^2/\text{m}^3$ (0,45 in²/ft³) of container

© ISO

internal volume shall be provided. It shall be activated within 0,2 seconds after the event at a maximum differential blow-out pressure of 14 kPa (2 lbf/in²). This opening area will be adequately protected from cargo to ensure its proper functioning in case of an emergency.

4.5 Customs sealing

When customs sealing is required, the container shall meet the appropriate requirements for international and domestic regulations.

5 Design loads

The container shall be used to restrain the maximum design loads given in table 2.

Table 2

8 Materials and processes

The materials and processes selected shall give consideration to the extremely hard usage to which the container will be subjected, to provide for maximum service life. All metal parts shall be suitably protected against corrosion. All non-metallic materials which are liquid absorbent shall be sealed or treated to prevent liquid absorbtion.

9 Markings

9.1 Marking required

Each unit load device shall carry at least the following markings:

- a) ULD Identification Code³⁾;
- b) Maximum gross weight (MGW), in kilograms and in pounds;

Size code in accordance with ISO 8097	Maximum gr Linen kg	oss weight ¹⁾	c) Actual tare weight (TARE), in kilograms and in RD Prounds; TEW
A2)	6 804	15 000	us.iten.al)
А	6 033	13 300 _{SO 10}	_{327:199} 9.2 Size of markings
М	16t804standard	ls.iteh.a <mark>1/5a000</mark> g/stand	ards/sist/c70d6110-04ae-41d8-8663-
В	4 536	dr07000a453e	iso-10327-1995 shall be in characters
1) The term "weight" is used throughout this Inter- national Standard instead of the correct technical term			a) not less than 101,6 mm (4 in) high for ULD ID Code, and
mass in order to conform to current commercial usage.			b) not less than 25,4 mm (1 in) high for the maxi-
2) For main deck only.			mum gross weight and tare weight.

6 Destination placard holder

One or more placard holders shall be fitted to the body to accommodate a destination placard of standard size A5 [210 mm \times 148 mm (8 1/4 in \times 5 7/8 in].

7 Tare weight objectives

The tare weight of the container shall be a minimum consistent with the requirements and within limits of sound design practice.

9.3 Marking location

The marking shall be shown at the top centre of at least two, preferably three, of the fixed panel sides, in such a manner that good readability is ensured during all phases of handling.

Top contoured units shall have markings on no less than two sides of the unit at a height between 1 143 mm and 1 651 mm (45 in and 65 in) above the base. The markings should be on the slope of the contour for readability when several units are butted together.

All characters shall be of proportionate width and thickness, durable, and in a colour contrasting with that of the container.

³⁾ In accordance with the IATA ULD Technical Manual, Specification 40/1.

9.4 Use of containers for hanging loads

9.4.1 General requirements

Containers may, as an option, be equipped with ancillary devices and/or attachments designed to support items of load in a hanging position, for example garments on hangers.

Depending on design, such devices can consist of either cargo hanging bars or frames directly attached to the container structure (with or without additional posts to prevent container deflection, as required), or a separate structure to be installed in the container to bring the hanging load to bear onto the container base.

In either case, it must be noted that load distribution on the base undersurface and ease of movement of the loaded container on aircraft or ground equipment conveyor systems will be much improved if the container is equipped with a stiff (for example forkliftable) type of base. A base core stiffness the minimum significantly exceedina of 429 N·m²/m (3 800 lbf·in²/in) width/length of core is recommended.

Notwithstanding the above minimum requirements, care should be taken that the maximum allowable area loads defined in the aircraft type's Weight and Balance Manual are not exceeded as a result of uneven or concentrated load distribution. If they are, guidance and approval from the aircraft manufacturer should be obtained prior to using the container with hanging loads.

9.4.3 Additional marking requirements

In addition to the mandatory container marking requirements given in 9.1, the container shall be marked, in the immediate vicinity of its maximum gross weight marking and in the same character size. with the following marking:

MAXIMUM HANGING LOAD XXXX KG (XXXX LB)

10 Test No. 1: Horizontal load test, operational loads

9.4.2 Loading requirements

(standard his test shall be carried out to prove the ability of the container to withstand maximum operational horizon-

Generat IEW

tal loads that may be experienced during handling and transportation. 1/2010/07/046110-04ae-41d8-8663-The load path from hanging loads into the containerso 103

10.1

and the supporting aircraft structured can inbe as ignifig/standards

cantly different from that of loads resting on the base, a453e/iso-10327-1995 as taken into account by container airworthiness certification. As a result, particularly in the event of major download gusts during flight, parts of the aircraft structure or conveyor equipment could be damaged by uneven load distribution.

In order to protect the aircraft structure:

a) Unless specific allowances are provided by the aircraft manufacturer to carry hanging loads at certain container positions, the maximum allowed hanging load shall not exceed 50 % of the container's certified maximum gross weight if the container is equipped with a thin (for example aluminium plate) base.

The above requirements apply to the use of general purpose containers, but certain container types specially designed for carrying hanging loads may allow up to 100 % of certified maximum gross weight.

In addition, elements used to hang the loads from b) the supporting structure shall be designed to break away under a down load equivalent to twice the maximum allowed hanging load.

10.2 Procedure

Secure the container under test to the aircraft restraint system or a system equivalent to each of those shown in ISO 8097, appropriate to the base configuration.

Apply horizontally to one side of the container a test load evenly distributed equal to the maximum gross weight, less tare.

Repeat the test with the test load applied to the side perpendicular to the previous one.

Should their structure not be identical, test the opposite sides in the same manner.

10.3 Requirements

The deflection of the intersection of the top and side panel shall not exceed 38,1 mm (1,5 in) out of the maximum allowable contour (see figure 1).

Upon completion of the test, the container shall show neither detrimental permanent deformation, nor abnormality which will render it unsuitable for use,

and the dimensional requirements affecting handling, securing and interchange shall be satisfied.

11 Test No. 2: Upward load test, operational loads

11.1 General

This test shall be carried out to prove the ability of the container to withstand the maximum operational upward loads that may be experienced during handling and transportation.

11.2 Procedure

Secure the container under test to the aircraft restraint system equivalent to each of those shown in ISO 8097, appropriate to the base configuration.

Apply upwards to the container a test load evenly distributed equal to the maximum gross weight, less tare.

11.3 Requirements iTeh STANDARD

Upon completion of the test, the container shall show and the dimensional requirements affecting handling, neither permanent deformation, hor abnormality securing and interchange shall be satisfied. which will render it unsuitable for use, and those di-

mensional requirements affecting handling, securing27:1995 The doors shall open and close with no prevalent and interchange shall betsatisfied ds.iteh.ai/catalog/standards/sist/binding, and the locks3 shall engage and disengage. da976cba453e/iso-10327-1995

12 Test No. 3: Base strength

12.1 General

This test shall be carried out to prove the ability of the container base to withstand the maximum operational loads that may be experienced during handling and transportation.

12.2 Procedure

12.2.1 All containers

Rest the container under test on the aircraft loading system or its equivalent, consisting of four rows of rollers approximately equally spaced over a minimum width of 1 930 mm (76 in) measured between centres, with each row composed of 38,1 mm (1,5 in) diameter rollers 76,2 mm (3 in) long uncrowned with edge radius R = 1,5 mm (0,06 in), spaced on 254 mm (10 in) centres. The container travels perpendicular to the roller axis.

Load the container floor uniformly to 5 749 daN/m² (1 200 lbf/ft²). The load shall be applied

to an area 1 524 mm (5 ft) wide centred in the container, and the load shall equal but not exceed three times the container maximum payload.

12.2.2 Additional test for containers 2 438 mm to 2 997 mm (96 in to 118 in) high

Place the container on a roller system compatible with the minimum requirements of ISO 4116, and in such a way that the industrial truck can easily drive into the container.

Manoeuvre, over an area extending at least 457 mm (1,5 ft) inside the container, an industrial truck loaded to an axle weight of not less than 5 380 daN (12 000 lbf) (including the weight of the truck) or 2 668 daN (6 000 lbf) per wheel, applied to a contact area not greater than 141 cm² (22 in²), and assuming a wheel width of not less than 178 mm (7 in) and wheel centres of 762 mm (30 in).

12.3 Requirements

Upon completion of the test(s), the container shall show neither detrimental permanent deformation, nor abnormality which will render it unsuitable for use, and the dimensional requirements affecting handling, securing and interchange shall be satisfied.

13 Test No. 4: Cyclic test and bridging and cresting

13.1 General

This test shall be carried out to prove the ability of the container base and structure to withstand the maximum operational loads that may be experienced during handling.

13.2 Procedure

Uniformly load the container to its maximum gross weight. The height of the centre of gravity shall be 50 % of the height shown in ISO 8097. The maximum weight of a single load shall not exceed 25 daN (56 lbf) and shall have a maximum base of 1 000 cm² (155 in²). Cycle the container 300 times over the system defined in figure 2, at a speed of 0,305 m/s (1 ft/s).

Each cycle shall be equal to at least the distance between A and C (or C and A). The test shall be such that the container bumps twice per cycle at the above-mentioned speed against the end stops.