INTERNATIONAL STANDARD

First edition 1992-05-01

Glass — Determination of stress-optical coefficient —

Part 1: iTeh STEnsileDtesRD PREVIEW (standards.iteh.ai)

Verre <u><u>Rétermination</u> du coefficient photo-élastique – https://standards.ipartient/lessaidde/fraction7435-9cd9-4e83-8d27a686d6fdefa2/iso-10345-1-1992</u>

Reference number ISO 10345-1:1992(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

International Standard ISO 10345-1 was prepared by Technical Committee ISO/TC 48, Laboratory glassware and related apparatus, Sub-Committee SC 5, Quality of glassware. ISO 10345-1:1992

https://standards.iteh.ai/catalog/standards/sist/4d7f7435-9cd9-4e83-8d27-ISO 10345 consists of the following parts.6sunderfatheo-general_title Glass -- Determination of stress-optical coefficient:

- Part 1: Tensile test
- Part 2: Bending test

Annex A of this part of ISO 10345 is for information only.

© ISO 1992

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Glass — Determination of stress-optical coefficient —

Part 1:

Tensile test

1 Scope

This part of ISO 10345 describes the tensile test for determining the stress-optical coefficient of isotropic glass. The stress-optical coefficient is a characteristic value of materials and it is necessary for determining the stress from the results of RD measurement of stress birefringence (standards.ifeApparatus

NOTE 2 The stress-optical coefficient can also be determined by a compressive test if bend stress and shear stress are sufficiently insignificant (see 4.2 and 6.3). The direction of the testing force is then opposite to that of the tensile test and the compensator shall be applied after being turned through 90°.

Definition 2

4.1 Device for measuring the height of the test ISO 10345-1:1 specimen, to the nearest 0,01 mm. For the purposes of thistipartiof480it40345atahe/stondards/sist lowing definition applies. a686d6fdefa2/iso-10345-1-1992

PREVIE

2.1 stress-optical coefficient: Ratio of birefringence effect to applied uniaxial stress on an optical material. [ISO 9802[1]]

where

Κ is the stress-optical coefficient;

- Δs is the optical path difference;
- is the light path in the test specimen а (which is identical with the breadth b of the test specimen);
- is the tensile or compressive stress. σ

NOTE 1 The stress-optical coefficient is a function of the wavelength. It can be either positive or negative.

Principle 3

Uniaxial loading of the test specimen in the tensile test and stress-optical measurement of the optical path difference at the centre of the test specimen.

4.2 Apparatus, consisting of stressing equipment including force measuring device and polarization measuring equipment with compensator.

The stressing equipment shall allow the application of an uniaxial tensile load to the vertically arranged test specimen across the measuring area (see figure 1). The test specimen shall not be loaded simultaneously by shearing and bending. The force measuring device shall be capable of determining the testing forces to an accuracy of 1 %. The design of the stressing equipment and test specimen holding device shall allow the tensile axis to be aligned with the axis of the test specimen during the test.

The polarization measuring equipment shall allow the measurement of the optical path difference with the compensator to 5 nm. The light source shall be white light with a corresponding interference filter for the wavelength of 589,3 nm.

The stressing equipment and the polarization measuring equipment shall be reciprocally adjustable in both the horizontal and vertical directions, so that the centre of the test specimen is located in the viewing axis of the polarization measuring equipment.

Dimensions in millimetres

Figure 1 - Test specimen with holes

The subtraction position of the compensator of the polarization measuring equipment shall be determined using a glass for which the sign of the stress-optical coefficient is known.

5 Test specimens

5.1 Dimensions of the test specimens

Over the total length of the test specimen (see figure 1), the rectangular cross-section $(b \times h)$ shall be at least 25 mm² and the length *l*, at least 50 mm. The breadth *b* and the height *h* shall be not less than 4 mm. In addition, the test specimen shall be straight.

If the test specimen is to be held by steel pivots set in holes, the height h and the breadth b of the test specimen shall be not less than 6 mm. The distances between the holes and the upper and lower surfaces of the test specimen shall be at least 6 mm. If the test specimen is held in the stressing equipment by bonding its upper and lower surfaces, these surfaces shall be normal to the axis of the test specimen and nearly plane-parallel. Small deviations from plane-parallelism are compensated by hardened adhesive remaining between the test specimen holding device and the upper and lower surfaces of the test specimen. For good bonding, the upper and lower surfaces of the test specimen should be rough-ground.

5.2 Condition of the test specimens

The test specimen shall not have inhomogeneously distributed residual stresses. Homogeneously distributed residual stresses should be lower than 1 % of the measuring value.

The surfaces of the test specimen for light transmission, with areas of $(l \times h)$, shall be ground and polished in such a way that the measurement of the optical path difference is not interfered with by surface roughness. The surfaces of the test specimen, with areas of $(l \times b)$, shall be at least fine-ground.

6 Procedure

6.1 Take all measurements at room temperature between 15 °C and 35 °C. Any temperatures differing from this value shall be stated in the test report.

6.2 Measure the height h of the test specimen at the measuring surface, to the nearest 0,01 mm.

NOTE 3 It is not also necessary to measure the breadth b of the test specimen, because it is not needed for the calculation of the stress-optical coefficient according to equation (2).

6.3 Mount the test specimen in the stressing equipment in such a way that the axis of the test specimen is in line with the tensile axis and that any bending and shearing load is excluded at the measuring surface (see 6.4 and figure 1). This requirement is considered to be fulfilled when a gradient of birefringence does not exist in this region in the horizontal direction.

should be applied for the determination of the optical path difference.

7 Expression of results

Calculate the stress optical coefficient K according to the numerical equation (2):

$$K = \frac{h(\Delta s_1 - \Delta s_2)}{F_1 - F_2} \qquad \dots (2)$$

where

- *K* is the stress-optical coefficient, expressed in 10⁻⁻⁶ mm²/N;
- *h* is the height of the test specimen, in millimetres;
- F_1 and F_2 are the testing forces, in newtons;
- Δs_1 is the optical path difference with testing force F_1 , in nanometres;
- Δs_2 is the optical path difference with testing force F_2 , in nanometres.

gradient of birefringence does not exist in this region in the horizontal direction. **EXISTIN DAR** used with more than two testing forces, the stress-**6.4** In the vertical direction, the distance between **6.5** optical coefficient should be determined from the the point of polarizing optical measurement and the centre of the test specimen shall be not more than

10 mm.

ISO 10345-1:892 Test report

https://standards.iteh.ai/catalog/standards/sist/4d7f7435-9cd9-4e83-8d27-In the horizontal direction, this distance shall be not more than a quarter of the height of the test specimen (also see the measuring surface in figure 1).

6.5 When the light passes through the test specimen in a perpendicular direction, measure the optical path difference of the birefringence at the measuring surface (see figure 1), twice for each of at least two testing forces to be applied. Use testing forces of more than 100 N which shall differ by more than 200 N. The direction of light transmission shall be perpendicular to the stressing direction of the testing force and parellel to the end faces of the test specimen. For test specimens with striae or other inhomogeneities, three different testing forces

- a) reference to this part of ISO 10345;
- b) type and designation of the glass tested;
- c) wavelength of the light source, if 589,3 nm was not used:
- d) testing temperature, if outside the range 15 °C to 35 °C;
- e) stress-optical coefficient, expressed in 10 ⁶ mm²/N to the nearest 0,05 10 ⁶ mm²/N.

Annex A

(informative)

Bibliography

[1] ISO 9802:—¹⁾, Raw optical glass — Vocabulary.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10345-1:1992</u> https://standards.iteh.ai/catalog/standards/sist/4d7f7435-9cd9-4e83-8d27a686d6fdefa2/iso-10345-1-1992

¹⁾ To be published.

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally lcft blank <u>ISO 10345-1:1992</u>

https://standards.iteh.ai/catalog/standards/sist/4d7f7435-9cd9-4e83-8d27a686d6fdefa2/iso-10345-1-1992

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10345-1:1992</u> https://standards.iteh.ai/catalog/standards/sist/4d7f7435-9cd9-4e83-8d27a686d6fdefa2/iso-10345-1-1992

UDC 666.11.01:620.172.21

Descriptors: glass, stresses, tests, tension tests, determination, optical properties.

Price based on 4 pages

=