INTERNATIONAL STANDARD

First edition 1998-07-01

Rubber — Identification of accelerators in cured and uncured compounds

Caoutchouc — Identification des accélérateurs dans les mélanges vulcanisés ou non

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10398:1998</u> https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84bdd6-cb7ff5e74900/iso-10398-1998

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10398 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10398:1998</u> https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84bdd6-cb7ff5e74900/iso-10398-1998

© ISO 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Rubber — Identification of accelerators in cured and uncured compounds

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

1.1 This International Standard specifies methods using gas chromatography (GC) and thin layer chromatography (TLC) for the separation and identification of the following classes of accelerators in vulcanized and unvulcanized compounds:

- thiazoles
- sulfenamides
- thiurams and dithiocarbamates
 iTeh STANDARD PREVIEW
- guanidines
- dithiodimorpholine

1.2 When 2-mercaptobenzothiazole (MBT) is identified and no sulfenamides are present, it is not possible to establish if the original accelerator was MBT and/or its salts of 2,27-dibenzothiazoledisulfide (MBTS) as each of these accelerators may be produced from the others during the vulcanization process.

(standards.iteh.ai)

1.3 When sulfenamides are identified, it is not possible to establish if MBT and/or its salts and MBTS are present as these accelerators may be produced from 2-mercaptobenzothiazole sulfenamides during the vulcanization process.

1.4 The methods do not distinguish thiurams and dithiocarbamates derived from the same amines.

1.5 From the morpholine identification it is not possible to determine if the initial accelerator is 2-morpholinothiobenzothiazole (MBS) or dithiomorpholine as morpholine may be formed from MBS and dithiodimorpholine during the vulcanization process.

1.6 The separation of accelerator compounds from unvulcanized compounds is relatively straightforward whereas separation from vulcanized compounds is difficult due to the lesser ability of solvents to penetrate the vulcanized matrix.

1.7 Some compounding ingredients may interfere with method B. In such cases methods A or C shall be used.

2 Principle

2.1 Method A — Identification of amines via GC and thiazoles via TLC

2.1.1 A portion of the sample compound is refluxed with hydrochloric acid (HCI) to hydrolyze sulfenamides, thiurams and dithiocarbamates. The resulting amine hydrochlorides are separated and purified. After purification, the amines are separated by GC as their trifluoroacetamide derivatives. Identification may also be effected by comparison of GC retention times of sample and standard trifluoroacetamides, prepared and analyzed under the same analysis conditions.

2.1.2 The HCI reflux solubles and insolubles, remaining after amines are separated by distillation, are combined and refluxed with sodium hydroxide (NaOH). The resultant sodium salts of the thiazoles formed from free thiazoles and from MBT produced during the HCI reflux of sulfenamides and other MBT derivatives are separated by extraction and purified. After purification, the thiazoles are separated by TLC and qualitatively detected by comparison of R_t and colours of the sample TLC spots with R_t and colours of standard thiazole spots prepared and analyzed under the same analysis conditions.

2.2 Method B — Identification of amines, guanidines, thiazoles and dithiocarbamates via TLC

2.2.1 Accelerators are extracted from the sample with suitable solvents.

2.2.2 A portion of the extract is hydrolyzed with HCI and the resultant amines separated and qualitatively detected by TLC through comparison of R_{f} and colours of sample TLC spots with standard TLC spots prepared and analyzed under the same analysis conditions.

2.2.3 A second portion of the extract is hydrolyzed with ammonium hydroxide (NH_4OH) and the ammonium salts of the thiazoles, dithiocarbamates and sulfenamides are separated and qualitatively detected by TLC through comparison of R_1 and colours of sample TLC spots with standard TLC spots prepared and analyzed under the same analysis conditions.

2.3 Method C — Identification of thiurams, thiazoles, sulfenamides and guanidines via TLC

2.3.1 Accelerators are extracted from the sample with suitable solvents.

2.3.2 The extracted accelerators are separated and qualitatively detected by TLC through comparison of R_r and colours of sample TLC spots with standard TLC spots prepared and analyzed under the same analysis conditions.

(standards.iteh.ai)

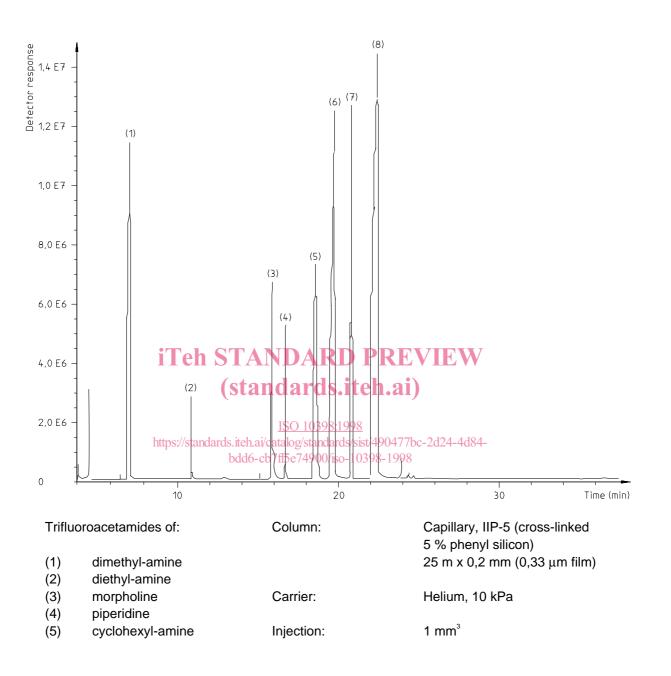
3 Method A — Identification of amines via GC and thiazoles via TLC

3.1 Apparatus

https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84bdd6-cb7ff5e74900/iso-10398-1998

Ordinary laboratory apparatus and

3.1.1 Several GC column types and **operating conditions** may be used providing column type and operating conditions are chosen which give good separation of the trifluoroacetamides from other eluting components. An example of trifluoroacetamide separation is given in figure 1 together with column type and GC operating conditions.


3.1.2 TLC plates covered with a silica gel layer.

NOTE — TLC plates HPTLC Kieselgel 60, 10 cm x 10 cm, supplied by Merck, have been found to be suitable. Other plates with similar qualities may be used.

- **3.1.3 Desiccator** for storing activated TLC plates.
- **3.1.4 Developing tanks** for TLC.
- **3.1.5 Sprayers** for spraying the spray reagents.
- **3.1.6** Microsyringe for GC, capacity 10 mm³ (µl).
- **3.1.7** Microinjector or micropipettes for TLC, capacity 0,01 cm³.
- **3.1.8 Filter paper**, fast flowing.

3.2 Reagents

3.2.1 Mixture of isopropanol, hydrochloric acid and water, 50:25:25 (V/V/V).

3.2.2 Isopropanol.

3.2.3 Sodium hydroxide pellets.

3.2.4 Hydrochloric acid solution, prepared by diluting 1 volume of concentrated hydrochloric acid with 1 volume of water.

- 3.2.5 Trifluoracetic anhydride.
- 3.2.6 Methylene chloride.
- 3.2.7 Sodium sulfate, anhydrous.
- **3.2.8 Sodium hydroxide solution**, 40 g/dm³.
- 3.2.9 *n*-heptane.

3.2.10 Eluent A: mixture of

<i>n</i> -hexane	55 parts in volume
methylene chloride	35 parts in volume
ethyl ether	35 parts in volume
methanol	15 parts in volume DARD PREVIEW
acetic acid	15 parts in volume dards.iteh.ai)
3.2.11 Spray reagent B: 1 % solution of 2,6-dichloroquinone-4-chlorimide in ethanol.	

- **3.2.12 Toluene**. https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84-bdd6-cb7ff5e74900/iso-10398-1998
- 3.2.13 *n*-butanol.

3.2.14 Spray reagent F: 5 % bismuth nitrate solution in 0,5 mol/dm³ nitric acid.

3.3 Procedure

3.3.1 Identification of the amines

3.3.1.1 Cut 2 g to 10 g of a representative sample into small pieces or thinly sheet about 10 g of a representative sample on a laboratory mill to about 0,25 mm to 0,5 mm thickness. Maintain the sample at the lowest possible temperature during the milling in order to avoid thermal degradation of the accelerators.

3.3.1.2 Reflux the small pieces or thinly sheeted test portion for 2 h with 100 cm³ of the mixture of isopropanol, hydrochloric acid and water (3.2.1).

3.3.1.3 Filter the boiling solution through fast flowing filter paper (3.1.8) into a conical flask. Wash the reactor vessel and the insoluble portion in the filter with 20 cm³ of boiling isopropanol (3.2.2) into the same conical flask.

3.3.1.4 Save the washed insoluble portion in the filter.

3.3.1.5 Adjust the solution to a volume of about 10 cm³ and cool at room temperature.

3.3.1.6 Make the solution strongly alkaline by adding sodium hydroxide pellets (3.2.3).

3.3.1.7 Distil the solution under a slow flow of nitrogen and recover the distillate by bubbling through a few cm^3 of the hydrochloric acid solution (3.2.4) into a conical flask.

3.3.1.8 Stop the distillation when 2 cm³ to 3 cm³ of solution remains in the distillation flask.

3.3.1.9 Add to the distillation residue the washed insoluble portion (3.3.1.4) and save the mixture.

3.3.1.10 Concentrate the distilled solution to a volume of 2 cm³ to 3 cm³.

3.3.1.11 Transfer the concentrated solution into a 10 cm³ distillation vessel and heat in a sand bath until only a few drops of solution remain in the vessel, then evaporate the solution to dryness by heating in an oven at 80 °C overnight.

3.3.1.12 Cool the dry residue at room temperature, pour 2 cm³ of trifluoroacetic anhydride (3.2.5) into the vessel and immediately connect to a reflux condenser.

In order to prevent moisture from entering the vessel, connect the upper end of the reflux condenser with a tube filled with calcium chloride.

3.3.1.13 Reflux for 1 h in an oil bath at 80 °C to 90 °C, disconnect the reflux condenser, concentrate the solution at a volume of about 0,5 cm³

³ of water and transfer the solution to a separating funnel.

3.3.1.15 Add 5 cm³ of methylene chloride (3.2.6), shake, allow the two layers to separate and recover the layer of methylene chloride. Repeat the extraction two times with methylene chloride. Discard the aqueous layer.

3.3.1.16 Wash the methylene chloride extract with water to pH 7 to ensure that all the trifluoroacetic acid has been removed. Teh STANDARD PREVIEW

3.3.1.17 Add about 0,1 g of anhydrous sodium sulfate (3.2.7) to the methylene chloride extract and shake to eliminate any trace of water, filter through filter paper and concentrate the solution to a volume of about 0,5 cm³.

3.3.1.18 Inject a suitable amount of the solution into the jujection port of the gas chromatograph (3.1.1) and record the chromatogram. https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84-

hdd6-ch7ff5e74900/iso-10398-1998

3.3.1.19 Compare the retention times of the peaks obtained from the sample solution with the retention times of the peaks obtained from solutions containing known amides under the same gas chromatographic operating conditions.

NOTE — If the trifluoroacetamides of the amines to be identified are not available, it is possible to prepare them by carrying out the procedure described using the pure accelerators to produce the amines to be identified. These standard solutions can be stored at 5 $^{\circ}$ C for at least 1 year.

3.3.2 Preparation of the TLC plates

3.3.2.1 Activate the TLC plates (3.1.2) by heating in an oven at 105 °C for 2 h or at 80 °C overnight.

3.3.2.2 Cool the activated plates in the desiccator (3.1.3).

NOTE — The activated plates can be stored in the desiccator for 10 days without further activation.

3.3.2.3 Just before use, inscribe a start line on the activated plate 15 mm to 20 mm from the edge of the plate.

3.3.2.4 Different solutions may be applied on the same plate, along the start line. The distance between the two spots shall be at least 25 mm.

3.3.3 Procedure

3.3.3.1 Pour 50 cm³ of isopropanol (3.2.2) and 50 cm³ of the sodium hydroxide solution (3.2.8) into the vessel containing the mixture 3.3.1.9 and reflux for 2 h.

3.3.3.2 Filter the boiling solution through filter paper and wash the reaction vessel and the filter with a few cm³ of boiling isopropanol. Quantitatively transfer the filtered solution and washings into a separating funnel.

and cool to room temperature.

3.3.3. Extract this solution two times with 2 portions of 25 cm³ each of methylene chloride (3.2.6), discarding the methylene chloride extracts.

3.3.34 Make the solution strongly acidic by adding hydrochloric acid solution (3.2.4).

3.3.3.5 Add 25 cm³ of methylene chloride, shake, allow the layers to separate and recover the methylene chloride extract. Repeat the extraction with another 25 cm³ portion of methylene chloride and combine the methylene chloride extracts. Discard the aqueous layer.

3.3.3.6 Concentrate the methylene chloride extract to a volume of 2 cm³ to 3 cm³.

3.3.4 Identification of the thiazoles

3.3.4.1 Apply a suitable amount of the methylene chloride extract from the test portion (3.3.3.6) to the start line. Also apply standard solutions of the thiazoles to be identified to the start line.

3.3.4.2 Place the plate in a chromatographic developing tank (3.1.4) containing *n*-heptane (3.2.9) and allow the eluent to run to the opposite edge of the plate.

3.3.4.3 Remove the plate from the developing tank and allow the solvent to evaporate at room temperature.

3.3.4.4 Place the plate in a chromatographic developing tank containing eluent A (3.2.10) and allow the eluent to migrate to 0,5 cm from the opposite edge of the plate.

3.3.4.5 Remove the plate from the developing tank and allow the solvent to evaporate at room temperature.

3.3.4.6 Spray the plate with spray reagent B (3.2.11). Identify the thiazoles by comparing the R_i and colour of the spots obtained from the solution of the sample with the R and colour of the spots obtained from the reference solutions.

3.3.4.7 If the identification is not completely satisfactory, the following bi-dimensional technique can be used to https://standards.iteh.a/catalog/standards/sist/49047/bc-2d24-4d84-bdd6-cb7ff5e74900/iso-10398-1998

3.3.4.8 Evaporate a suitable amount of the methylene chloride extract on a starting point, near a corner of the TLC plate, and prepare another TLC plate in the usual way by evaporating, on the starting point, a solution containing a mixture of the thiazoles to be identified.

3.3.4.9 Place the two plates in a chromatographic developing tank containing *n*-heptane (3.2.9) and allow the eluent to migrate to the opposite edge of the plates.

3.3.4.10 Remove the plates from the developing tank and allow the solvent to evaporate at room temperature.

3.3.4.11 Place the plates in a chromatographic developing tank containing toluene (3.2.12) and allow the solvent to migrate for 7 cm.

3.3.4.12 Remove the plates from the developing tank and allow to evaporate at room temperature.

3.3.4.13 Place the plates in a chromatographic developing tank containing *n*-butanol (3.2.13) taking care that the elution direction is perpendicular to the direction of the elution with toluene (3.3.4.11). Allow the eluent to migrate for 7 cm.

3.3.4.14 Remove the plates from the developing tank and allow to evaporate at room temperature.

3.3.4.15 Spray the plates with spray reagent F (3.2.14).

Identify the thiazoles by comparing the R_r and colour of the spots developed on the plate corresponding to the methylene chloride extract with the R_r and colour of the spots developed on the plate corresponding to the solution of the known thiazoles.

4 Method B — Identification of amines, guanidines, thiazoles and dithiocarbamates via TLC

4.1 Apparatus

Same as for method A, except 3.1.1 and 3.1.6.

4.2 Reagents

- 4.2.1 Mixture of methylene chloride and ethanol, 1:2 (V/V).
- 4.2.2 Hydrochloric acid solution, 2 mol/dm³.
- 4.2.3 Methylene chloride.
- **4.2.4** Ammonium hydroxide solution, 4 mol/dm³.
- 4.2.5 Eluent 1: mixture of toluene and ethyl acetate, 9:1 (V/V).
- 4.2.6 Eluent 2: mixture of hexane, toluene and ethanol, 30:58:12 (V/V).
- 4.2.7 Eluent 5: mixture of ethanol, acetone and ammonium hydroxide, 15:15:70 (V/V).
- 4.2.8 Eluent 6: mixture of toluene, ethanol and acetic acid, 6:3:1 (V/V).
- 4.2.9 Eluent 7: mixture of acetone and ammonium hydroxide solution, 99,5:0,5 (WV).
- 4.2.10 Eluent 9: mixture of *n*-butanol, acetic acid and water, 4.1.5 (WV).
- **4.2.11** Eluent 10: mixture *n*-butanol, formic acid and water, 75:15:10 (*V/V*).
- https://standards.iteh.ai/catalog/standards/sist/490477bc-2d24-4d84-
- **4.2.12 Eluent 11**: mixture of hexane and toluene 174 (WM) -10398-1998
- 4.2.13 Spray reagent A: 5 % solution of cupric sulfate.
- 4.2.14 Spray reagent B: 1 % solution of 2,6-dichloroquinone-4-chlorimide in ethanol.
- 4.2.15 Spray reagent E: 2 % solution of ninhydrin in ethanol.

 $\mathsf{NOTE}-\mathsf{The}$ eluents and spray reagents should be freshly prepared.

4.3 Preparation of the TLC plates

Prepare the TLC plates as stated in 3.3.2.

4.4 Procedure

4.4.1 Cut 2 g to 10 g of a representative sample into small pieces or thinly sheet about 10 g of a representative sample on a laboratory mill to about 0,25 mm to 0,5 mm thickness. Maintain the sample at the lowest possible temperature during the milling in order to avoid thermal degradation of the accelerators.

4.4.2 Transfer about 2 g of the sample into a conical flask, add 30 cm³ of the extraction solvent (4.2.1) and stopper the flask.

4.4.3 Shake the conical flask for about 3 h with a shaking machine or transfer into an ultrasonic bath and extract for about 1 h.

4.4.4 Recover the extract and extract the sample again as described.