

Edition 1.0 2012-12

TECHNICAL REPORT

High-voltage switchgear and controlgear – Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

Document Preview

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2012 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,

please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Useful links:

IEC publications search - www.iec.ch/searchpub

The advanced search enables you to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and

withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on-line.

Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

Edition 1.0 2012-12

TECHNICAL REPORT

High-voltage switchgear and controlgear – **Carros** Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

Document Preview

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.130.10

ISBN 978-2-83220-558-7

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FORE	WORD		15
1 Ge	eneral		17
1.1	I Scope		17
1.2	2 Norma	ative references	17
2 Ev	olution of	IEC standards for high-voltage circuit-breaker	18
3 Cla	assificatio	n of circuit-breakers	22
3 1	L Gener	al	·····22
3.3	D Electri	al	22
3.2		sitive current switching class C1 and C2	22
3.0	1 Mecha	anical endurance class M1 and M2	23
3.4			23
0.0	2 5 1	General	24
	3.5.1		24
	3.3.Z		24
2.0	3.3.3 Conoli		24
3.0		usion and dialactric tasta	
4 INS	Sulation le		25
4.1	Gener	al	25
4.2	2 Longit	udinal voltage stresses	28
4.3	3 High-\	voltage tests	28
4.4	1 Impuls	se voltage withstand test procedures	29
	4.4.1	General	29
	4.4.2	Application to high-voltage switching devices	29
	4.4.3	Additional criteria to pass the tests	30
	4.4.4	Review and perspective	30
	4.4.5	^{ca} Theory!andards/iec/a2e/1020-046b-4d2d-a/a/-119/et0ebct4/iec	-tr-622/133 ⁰⁶
	4.4.6	Summary of 15/2 and 3/9 test methods	36
	4.4.7	Routine tests	37
4.5	5 Correc	ction factors	37
	4.5.1	Altitude correction factor	37
	4.5.2	Humidity correction factor	40
4.6	6 Backg	round information about insulation levels and tests	41
	4.6.1	Specification	41
	4.6.2	Testing	43
	4.6.3	Combined voltage tests of longitudinal insulation	43
4.7	7 Lightn	ing impulse withstand considerations of vacuum interrupters	44
	4.7.1	General	44
	4.7.2	Conditioning during vacuum interrupter manufacturing	44
	4.7.3	De-conditioning in service	45
	4.7.4	Re-conditioning in service	45
	4.7.5	Performing lightning impulse withstand voltage tests	45
5 Ra	ated norm	al current and temperature rise	45
5 1	Gener	al	45
5.2	2 Load	current carrying requirements	45
0.2	521	Rated normal current	45
	5.2.2	Load current carrying capability under various conditions of ambi	ent

	5.3	Tempe	erature rise testing	49
		5.3.1	Influence of power frequency on temperature rise and temperature rise tests	49
		5.3.2	Test procedure	49
		5.3.3	Temperature rise test on vacuum circuit-breakers	51
		5.3.4	Resistance measurement	52
	5.4	Additic	onal information	52
		5.4.1	Table with ratios <i>I</i> _a / <i>I</i> _r	52
		5.4.2	Derivation of temperature rise equations	52
6	Tran	sient re	covery voltage	53
	6.1	Harmo	pnization of IEC and IEEE transient recovery voltages	53
		6.1.1	General	53
		6.1.2	A summary of the TRV changes	54
		6.1.3	Revision of TRVs for rated voltages of 100 kV and above	57
		6.1.4	Revision of TRVs for rated voltages less than 100 kV	60
	6.2	Initial	Transient Recovery Voltage (ITRV)	62
		6.2.1	Basis for specification	62
		6.2.2	Applicability	63
		6.2.3	Test duties where ITRV is required	63
		6.2.4	ITRV waveshape	64
		6.2.5	Standard values of ITRV	64
	6.3	Testing	g	65
		6.3.1	ITRV measurement	65
		6.3.2	SLF with ITRV	66
		6.3.3	Unit testing	67
7	Shor	t-line fa	ults	67
	7.1	Short-	line fault requirements TR. 62271.306.2012	67
		7.1.1	Basis for specification	
		7.1.2	Technical comment	68
		7.1.3	Single-phase faults	68
		7.1.4	Surge impedance of the line	68
		7.1.5	Peak voltage factor	69
		7.1.6	Rate-of-Rise of Recovery Voltage (RRRV) factor "s"	71
	7.2	SLF te	esting	72
		7.2.1	Test voltage	72
		7.2.2	Operating sequence	72
		7.2.3	Test duties	72
		7.2.4	Test current asymmetry	73
		7.2.5	Line side time delay	74
		7.2.6	Supply side circuit	74
	7.3	Additic	onal explanations on SLF	75
		7.3.1	Surge impedance evaluation	75
		7.3.2	Influence of additional capacitors on SLF interruption	75
	7.4	Compa	arison of surge impedances	80
	7.5	Calcul	ation of actual percentage of SLF breaking currents	81
	7.6	TRV w	vith parallel capacitance	82
8	Out-o	of-phase	e switching	85
	8.1	Refere	ence system conditions	85
		8.1.1	General	85

		8.1.2	Case A	
		8.1.3	Case B	86
	8.2	TRV pa	arameters introduced into Tables 1b and 1c of the first edition of	
		IEC 62	271-100	
		8.2.1		
		8.2.2	Case A	
		8.2.3	Case B	
	.	8.2.4	IRV parameters for out-of-phase testing	
9	Swite	ching of	capacitive currents	90
	9.1	Genera	al	90
	9.2	Genera	al theory of capacitive current switching	90
		9.2.1	De-energisation of capacitive loads	90
		9.2.2	Energisation of capacitive loads	103
	9.3	Non-su	ustained disruptive discharge (NSDD)	121
	9.4	Genera	al application considerations	124
		9.4.1	General	124
		9.4.2	Maximum voltage for application	124
		9.4.3	Rated frequency	
		9.4.4	Rated capacitive current	
		9.4.5	Voltage and earthing conditions of the network	125
		9.4.6	Restrike performance	
		9.4.7	Class of circuit-breaker	
		9.4.8	I ransient overvoltages and overvoltage limitation	
		9.4.9	No-load overhead lines	
		9.4.10	Capacitor banks	
		9.4.11	Switching through transformers	
		9.4.12	Effect of transient currents 2271-306.2012	
		9.4.13	Exposure to capacitive switching duties during fault switching	5227 14906-20
		9.4.14	Effect of load	
		9.4.15	Effect of reclosing	
		9.4.16	Resistor thermal limitations	
	<u> </u>	9.4.17	Application considerations for different circuit-breaker types	141
	9.5	Consid	derations of capacitive currents and recovery voltages under fault	143
		951	Voltage and current factors	143
		952	Reasons for these specific tests being non-mandatory in the	
		0.0.2	standard	144
		9.5.3	Contribution of a capacitor bank to a fault	144
		9.5.4	Switching overhead lines under faulted conditions	145
		9.5.5	Switching capacitor banks under faulted conditions	146
		9.5.6	Switching cables under faulted conditions	148
		9.5.7	Examples of application alternatives	148
	9.6	Explan	atory notes regarding capacitive current switching tests	149
		9.6.1	General	149
		9.6.2	Restrike performance	149
		9.6.3	Test programme	149
		9.6.4	Subclause 6.111.3 of IEC 62271-100:2008 – Characteristics of supply circuit	149
		9.6.5	Subclause 6.111.5 of IEC 62271-100:2008 – Characteristics of the capacitive circuit to be switched	149

		9.6.6 9.6.7	Subclause 6.111.9.1.1 of IEC 62271-100:2008 – Class C2 test duties Subclauses 6.111.9.1.1 and 6.111.9.2.1 of IEC 62271-100:2008 –	149
		9.6.8	Subclauses 6.111.9.1.2 and 6.111.9.1.3 of IEC 62271-100:2008 – Single-phase and three-phase line- and cable-charging current	150
		9.6.9	switching tests Subclauses 6.111.9.1.2. to 6.111.9.1.5 of IEC 62271-100:2008 – Three-phase and single-phase line, cable and capacitor bank	150
		9.6.10	switching tests Subclauses 6.111.9.1.4 and 6.111.9.1.5 of IEC 62271-100:2008 –	150
			Three-phase and single-phase capacitor bank switching tests	150
10	Gas	tightnes	S	151
	10.1	Specifi	ication	151
	10.2	Testing	g	151
	10.3	Cumula pressu	ative test method and calibration procedure for type tests on closed re systems	152
		10.3.1	Description of the cumulative test method	152
		10.3.2	Sensitivity, accuracy and calibration	153
		10.3.3	Test set-up and test procedure	153
		10.3.4	Example: leakage rate measurement of a circuit-breaker during low temperature test	154
11	Misc	ellaneou	us provisions for breaking tests	155
	11.1	Energy sequer	y for operation to be used during demonstration of the rated operating nce during short-circuit making and breaking tests	155
	11.2	Alterna	ative operating mechanisms	156
		11.2.1	General	156
		11.2.2	Comparison of the mechanical characteristics	157
		11.2.3	Comparison of T100s test results	159
		11.2.4	Additional test T100a TR 62271-306:2012	161
		11.2.5	Conclusions.ds/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62	16206-
12	Rate	d and te	est frequency	162
	12.1	Genera	al	162
	12.2	Basic o	considerations	163
		12.2.1	Temperature rise tests	163
		12.2.2	Short-time withstand current and peak withstand current tests	163
		12.2.3	Short-circuit making current	163
		12.2.4	Terminal faults	163
		12.2.5	Short-line fault	164
		12.2.6	Capacitive current switching	164
	12.3	Applica	ability of type tests at different frequencies	164
		12.3.1	Temperature rise tests	164
		12.3.2	Short-time withstand current and peak withstand current tests	165
		12.3.3	Short-circuit making current test	165
		12.3.4	Terminal faults (direct and synthetic tests)	165
		12.3.5	Short-line fault (direct and synthetic tests)	166
		12.3.6	Capacitive current switching	166
13	Term	inal fau	Its	167
	13.1	Genera	al	167
	13.2	Demor	nstration of arcing time	167
	13.3	Demor	nstration of the arcing time for three-phase tests	168

	13.4	Power frequency recovery voltage and the selection of the first-pole-to-clear factors 1.0: 1.2: 1.3 and 1.5	168
		13.4.1 General	168
		13.4.2 Equations for the first second and third-pole-to-clear factors	169
		13.4.3 Standardised values for the second- and third- pole-to-clear factors	171
	13.5	Characteristics of recovery voltage	171
	10.0	13.5.1 Values of rate-of-rise of recovery voltage and time delays	171
		13.5.2 Amplitude factors	170
	126	Arcing window and k, requirements for testing	172
	13.0	Arcing window and k_p requirements for testing	172
	13.7	Single-phase testing to cover three-phase testing requirements	170
	13.8	Combination tests for $k_{pp} = 1.3$ and 1.5.	170
	13.9	an application with a lower short-circuit requirement	176
	13.10) Basis for the current and TRV values of the basic short-circuit test-duty T10	177
14	Doub	ble earth fault	178
	14.1	Basis for specification	178
	14.2	Short-circuit current	179
	14.3	TRV	179
	14.4	Determination of the short-circuit current in the case of a double-earth fault	180
15	Trans	sport, storage, installation, operation and maintenance	182
	15 1	General iTeh Standards	182
	15.2	Transport and storage	183
	15.3	Installation https://standards.iteh.ai	184
	15.0	Commissioning	184
	15.5	Operation Document Preview	186
	15.6	Maintenance	186
16	Induc	tive load switching	186
10	1010		-100
	10.1		.7180)6-201
	16.2	Shuht reactor switching	187
		16.2.1 General	187
		16.2.2 Chopping overvoltages	187
		16.2.3 Re-ignition overvoltages	194
		16.2.4 Oscillation circuits	195
		16.2.5 Overvoltage limitation	197
		16.2.6 Circuit-breaker specification and selection	198
		16.2.7 Lesting	200
	16.3	Motor switching	200
		16.3.1 General	200
		16.3.2 Chopping and re-ignition overvoltages	201
		16.3.3 Voltage escalation	202
		16.3.4 Virtual current chopping	202
		16.3.5 Overvoltage limitation	203
		16.3.6 Circuit-breaker specification and selection	204
		16.3.7 Testing	204
	16.4	Unloaded transformer switching	205
		16.4.1 General	205
		16.4.2 Oil-filled transformers	205
		16.4.3 Dry type transformers	206
	16.5	Shunt reactor characteristics	207

	16.5.1 General	207
	16.5.2 Shunt reactors rated 72,5 kV and above	207
	16.5.3 Shunt reactors rated below 72,5 kV	208
16.6	System and station characteristics	209
	16.6.1 General	209
	16.6.2 System characteristics	209
	16.6.3 Station characteristics	209
16.7	Current chopping level calculation	210
16.8	Application of laboratory test results to actual shunt reactor installations	215
	16.8.1 General	215
	16.8.2 Overvoltage estimation procedures	215
	16.8.3 Case studies	217
16.9	Statistical equations for derivation of chopping and re-ignition overvoltages	222
	16.9.1 General	222
	16.9.2 Chopping number independent of arcing time	222
A	16.9.3 Chopping number dependent on arcing time	222
current ir	(Informative) Consideration of d.c. time constant of the rated short-circuit the application of high-voltage circuit-breakers	224
Annex B	(informative) Interruption of currents with delayed zero crossings	248
	(informative) Parallel switching	263
	(informative) Application of current limiting reactors	205
	(informative) Application of current limiting reactors	270
of rated v	(Informative) Explanatory notes on the revision of TRVs for circuit-breakers voltages higher than 1 kV and less than 100 kV	274
Annex F switching	(informative) Current and test-duty combination for capacitive current tests	278
Annex G	(informative) Grading capacitors	291
Annex H	(informative) Circuit-breakers with opening resistors	295
Annex I (informative) Circuit-breaker history ^{20-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-6}	22731806-
Ribliogra	nhy	320
Figure 1 Figure 2	 Probability of acceptance (passing the test) for the 15/2 and 3/9 test series Probability of acceptance at 5 % probability of flashover for 15/2 and 3/9 	31
Eiguro 2	User risk at 10 % probability of flashover, for 15/2 and 2/0 test series	20 20
Figure 4	Operating operatoristic outway for 15/2 and 2/0 test series	
Figure 4	- Operating characteristic curves for 15/2 and 5/9 test series	
Figure 6	α risks for 15/2 and 3/9 test methods	30
Figure 7	-p lists for 15/2 and 5/9 test methods	
Figure 8	Disruptive discharge mode of external insulation of switchgear and	
controlge	ear having a rated voltage above 1 kV up to and including 52 kV	41
Figure 9	 Temperature curve and definitions 	51
Figure 10 duration) – Evaluation of the steady state condition for the last quarter of the test shown in Figure 9	51
Figure 1'	I – Comparison of IEEE, IEC and harmonized TRVs, example for 145 kV at with $k_{\text{max}} = 1.3$	56
Figure 4	Comparison of IEEE IEC and harmonized TPV/a with compromise values	
of u_1 and	I_{t_1} , example for 145 kV at 100 % I_{sc} with $k_{pp} = 1,3$	59

Figure 13 – Comparison of TRV's for cable-systems and line-systems	61
Figure 14 – Harmonization of TRVs for circuit-breakers < 100 kV	62
Figure 15 – Representation of ITRV and terminal fault TRV	64
Figure 16 – Typical graph of line side TRV with time delay and source side with ITRV	′66
Figure 17 – Effects of capacitor size on the short-line fault component of recovery voltage with a fault 915 m from circuit-breaker	77
Figure 18 – Effect of capacitor location on short-line fault component of transient recovery voltage with a fault 760 m from circuit-breaker	78
Figure 19 – TRV obtained during a L ₉₀ test duty on a 145 kV, 50 kA, 60 Hz circuit- breaker	80
Figure 20 – TRV vs. ωIZ as function of t/t_{dL} when t_L/t_{dL} = 4,0	85
Figure 21 – Typical system configuration for out-of-phase breaking for case A	86
Figure 22 – Typical system configuration for out-of-phase breaking for Case B	86
Figure 23 – Voltage on both sides during CO under out-of-phase conditions	89
Figure 24 – Fault currents during CO under out-of-phase	
Figure 25 – TRVs for out-of-phase clearing (enlarged)	
Figure 26 – Single-phase equivalent circuit for capacitive current interruption	91
Figure 27 – Voltage and current shapes at capacitive current interruption	92
Figure 28 – Voltage and current wave shapes in the case of a restrike	93
Figure 29 – Voltage build-up by successive restrikes	94
Figure 30 – Recovery voltage of the first-pole-to-clear at interruption of a three-phase non-effectively earthed capacitive load	95
Figure 31 – Cross-section of a high-voltage cable	96
Figure 32 – Screened cable with equivalent circuit	96
Figure 33 – Belted cable with equivalent circuit	96
Figure 34 – Recovery voltage peak in the first-pole-to-clear as a function of C_1/C_0 , tr-delayed interruption of the second phase	62271-306-2 99
Figure 35 – Typical current and voltage relations for a compensated line	100
Figure 36 – Half cycle of recovery voltage	101
Figure 37 – Recovery voltage on first-pole-to-clear for three-phase interruption: capacitor bank with isolated neutral	102
Figure 38 – Parallel capacitor banks	105
Figure 39 – Equivalent circuit of a compensated cable	109
Figure 40 – Currents when making at voltage maximum and full compensation	110
Figure 41 – Currents when making at voltage zero and full compensation	110
Figure 42 – Currents when making at voltage maximum and partial compensation	111
Figure 43 – Currents when making at voltage zero and partial compensation	112
Figure 44 – Typical circuit for back-to-back cable switching	114
Figure 45 – Equivalent circuit for back-to-back cable switching	116
Figure 46 – Bank-to-cable switching circuit	118
Figure 47 – Equivalent bank-to-cable switching circuit	118
Figure 48 – Energisation of no-load lines: basic phenomena	120
Figure 49 – Pre-insertion resistors and their function	120
Figure 50 – NSDD in a single-phase test circuit	121
Figure 51 – NSDD (indicated by the arrow) in a three-phase test	122

Figure 52 – A first example of a three-phase test with an NSDD causing a voltage shift in all three phases of the same polarity and magnitude	122
Figure 53 – A second example of three-phase test with an NSDD (indicated by the arrow) causing a voltage shift in all three phases of the same polarity and magnitude	123
Figure 54 – A typical oscillogram of an NSDD where a high resolution measurement was used to observe the voltage pulses produced by the NSDD	123
Figure 55 – Example of the recovery voltage across a filter bank circuit-breaker	126
Figure 56 – RMS charging current versus system voltage for different line configurations at 60 Hz	129
Figure 57 – Typical circuit for back-to-back switching	132
Figure 58 – Example of 123 kV system	135
Figure 59 – Voltage and current relations for capacitor switching through interposed transformer	138
Figure 60 – Station illustrating large transient inrush currents through circuit-breakers from parallel capacitor banks	139
Figure 61 – Fault in the vicinity of a capacitor bank	144
Figure 62 – Recovery voltages and currents for different interrupting sequences	146
Figure 63 – Reference condition	147
Figure 64 – Comparison of reference and alternative mechanical characteristics	158
Figure 65 – Closing operation outside the envelope	159
Figure 66 – Mechanical characteristics during a T100s test	160
Figure 67 – Arcing windows and k_p value for three-phase fault in a non-effectively earthed system	172
Figure 68 – Three-phase unearthed fault current interruption	173
Figure 69 – Arcing windows and k_p values for three-phase fault to earth in an effectively earthed system at 800 kV and below	174
Figure 70 – Arcing windows and k_p values for three-phase fault to earth in an effectively earthed system above 800 kV	271 <u>-30</u> 175
Figure 71 – Simulation of three-phase to earth fault current interruption at 50 Hz	176
Figure 72 – Representation of a system with a double earth fault	179
Figure 73 – Representation of circuit with double-earth fault	180
Figure 74 – Fault currents relative to the three-phase short-circuit current	182
Figure 75 – General case for shunt reactor switching	188
Figure 76 – Current chopping phenomena	189
Figure 77 – General case first-pole-to-clear representation	189
Figure 78 – Single phase equivalent circuit for the first-pole-to-clear	190
Figure 79 – Voltage conditions at and after current interruption	191
Figure 80 – Shunt reactor voltage at current interruption	192
Figure 81 – Re-ignition at recovery voltage peak for a circuit with low supply side capacitance	194
Figure 82 – Field oscillogram of switching out a 500 kV 135 Mvar solidly earthed shunt reactor	195
Figure 83 – Single-phase equivalent circuit	196
Figure 84 – Motor switching equivalent circuit	202
Figure 85 – Unloaded transformer representation for TRV calculation	205
Figure 86 – TRV on switching out an unloaded 500 kV, 300 MVA transformer bank	206

	044
Figure 87 – Arc characteristic	211
Figure oo - Rizk's equivalent circuit for small current deviations from steady state	
Figure 09 – Single phase equivalent circuit	
Figure 90 – Circuit for calculation of arc instability	213
Figure 91 – Initial voltage versus arcing time	
Figure 92 – Suppression peak overvoltage versus arcing time	218
Figure 93 – Calculated chopped current levels versus arcing time	218
Figure 94 – Calculated chopping numbers versus arcing time	218
Figure 95 – Linear regression for all test points	219
Figure A.1 – Simplified single-phase circuit	225
Figure A.2 – Percentage d.c. component in relation to the time interval from the initiation of the short-circuit for the standard time constants and for the alternative special case time constants (from IEC 62271-100)	226
Figure A.3 – First valid operation in case of three-phase test (τ = 45 ms) on a circuit- breaker exhibiting a very short minimum arcing time	236
Figure A.4 – Second valid operation in case of three-phase test on a circuit-breaker exhibiting a very short minimum arcing time	236
Figure A.5 – Third valid operation in case of three-phase test on a circuit-breaker exhibiting a very short minimum arcing time	237
Figure A.6 – Plot of 60 Hz currents with indicated d.c. time constants	240
Figure A.7 – Plot of 50 Hz currents with indicated d.c. time constants	240
Figure A.8 – Three-phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current longer than the test circuit time constant	242
Figure A.9 – Single phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current shorter than the test circuit time constant	244
Figure A.10 – Single-phase testing of a circuit-breaker with a rated d.c. time constant of the rated short-circuit breaking current longer than the test circuit time constant	246
Figure B.1 – Single line diagram of a power plant substation	249
Figure B.2 – Performance chart (power characteristic) of a large generator	250
Figure B.3 – Circuit-breaker currents i and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Non-simultaneous fault inception	250
Figure B.4 – Circuit-breaker currents i and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Simultaneous fault inception at third phase	251
Figure B.5 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} in case of a three-phase fault following underexcited operation: Simultaneous fault inception at third phase	201
voltage crest	251
Figure B.6 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of a non- simultaneous three-phase fault, underexcited operation and failure of a generator	050
transformer	252
Figure B.7 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of a non- simultaneous three-phase fault following full load operation	253
Figure B.8 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of a non-simultaneous three-phase fault following no-load operation	254
Figure B.9 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under conditions of unsynchronized closing with 90° differential angle	255
Figure R 10 Prospective (inherent) current	200
Figure D. 10 – Frospective (initerent) current characteristic for a $\Omega_{\rm c}$ - suffer ture intersuctor	062
Figure D. IT – Are voltage-current characteristic for a SF6 puffer type interrupter	257

TR 62271-306 © IEC:2012(E)

Figure B.12 – Assessment function <i>e</i> (<i>t</i>)	. 257
Figure B.13 – Network with contribution from generation and large motor load	. 258
Figure B.14 – Computer simulation of a three-phase simultaneous fault with contribution from generation and large motor load	259
Figure B.15 – Short-circuit at voltage zero of phase A (maximum d.c. component in phase A) with transition from three-phase to two-phase fault	. 260
Figure B.16 – Short-circuit at voltage crest of phase B (phase B totally symmetrical) and transition from three-phase to two-phase fault	261
Figure C.1 – Equivalent circuit for parallel switching analysis	. 264
Figure C.2 – Parallel switching between transmission lines with disconnector	. 266
Figure D.1 – TRV for three-phase ungrounded fault on 25 kV feeder with current limiting reactor (1 p.u. = 30,6 kV peak)	271
Figure D.2 – EMTP simulation for case in Figure D.1 with and without parallel capacitance (1 p.u. = 20,4 kVpeak)	271
Figure D.3 – TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor	272
Figure D.4 – Initial part of TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor	272
Figure D.5 – Initial part of TRV for three-phase ungrounded fault on 66 kV shunt capacitor bank with 10 mH current limiting reactor with parallel 20 nF capacitor	273
Figure F.1 – Test-duty 2 combination for Case 1	. 280
Figure F.2 – TD1 combination for case a)	. 281
Figure F.3 – TD1 combination for case b)	. 281
Figure F.4 – TD1/TD2 combination for Case 1	. 282
Figure F.5 – TD2 combination for Case 2	. 285
Figure F.6 – TD1 combination	. 286
Figure F.7 – TD1/TD2 combination for Case 2	.286
Figure F.8 – TD2 combination for Case 3	. 289
Figure F.9 – TD1 combination for Case 3	. 289
Figure G.1 – Equivalent circuit of a grading capacitor	. 291
Figure G.2 – Equivalent circuit for determination of $tan \delta$, power factor and quality factor	. 292
Figure G.3 – Vector diagram of capacitor impedances	. 292
Figure H.1 – Typical system configuration for breaking with opening resistors	. 295
Figure H.2 – Circuit diagram used for the RLC method, ramp current injection	. 296
Figure H.3 – Relationship between TRV peak and critical damping	. 297
Figure H.4 – Approximation by superimposed ramp elements	. 298
Figure H.5 – Results of calculations done with RLC method	. 300
Figure H.6 – Example of a calculation of the TRV across the main interrupter for T100 using 700 Ω opening resistors	. 302
Figure H.7 – Example of a calculation of the TRV across the main interrupter for T10 using 700 Ω opening resistors	. 303
Figure H.8 – Typical TRV waveshapes in the time domain using the Laplace transform	. 303
Figure H.9 – TRV plots for resistor interrupter for a circuit-breaker with opening resistor in the case of terminal faults	305
Figure H.10 – Typical waveforms for out-of-phase interruption – Network 1 without opening resistor	. 306

Figure H.11 – Typical waveforms for out-of-phase interruption – Network 1 with opening resistor (700 Ω)	307
Figure H.12 – Typical waveforms for out-of-phase interruption – Network 2 without opening resistor	308
Figure H.13 – Typical waveforms for out-of-phase interruption – Network 2 with opening resistor (700 Ω)	309
Figure H.14 – Typical recovery voltage waveshape of capacitive current switching on a circuit-breaker equipped with opening resistors	311
Figure H.15 – Recovery voltage waveforms across the resistor interrupter during capacitive current switching by a circuit-breaker with opening resistors	312
Figure H.16 – Timing sequence of a circuit-breaker with opening resistor	313
Figure H.17 – Voltage waveshapes for line-charging current breaking operations	314
Figure I.1 – Manufacturing timelines of different circuit-breaker types	319
Table 1 – Classes and shapes of stressing voltages and overvoltages (from	27
Table 2 $-$ 15/2 and 3/0 test series attributes	∠1 20
Table 2 – $10/2$ and $0/9$ lest series all induces	26
Table $4 - Values$ for <i>m</i> for the different voltage waveshapes	JU
Table 5 Maximum ambient temperature versus altitude (IEC 60042)	00
Table 5 – Maximum amplem temperature versus antitude (TEC 00943) Table 6 – Some examples of the application of acceptance criteria for steady state conditions	49
Table 7 – Ratios of I_{a}/I_{r} for various ambient temperatures based on Table 3 of IEC 62271-1:2007	52
Table 8 – Summary of recommended changes to harmonize IEC and IEEE TRV requirements	57
Table 9 – Recommended u_1 values $\frac{\text{IEC TR 62271-306:2012}}{\text{IEC TR 62271-306:2012}}$	57
Table 10 – Standard values of initial transient recovery voltage – Rated voltages 100 kV and above	271-306 65
Table 11 – Comparison of typical values of surge impedances for a single-phase fault (or third pole to clear a three-phase fault) and the first pole to clear a three-phase fault	81
Table 12 – Actual percentage short-line fault breaking currents	82
Table 13 – Voltage factors for single-phase capacitive current switching tests	102
Table 14 – Inrush current and frequency for switching capacitor banks	133
Table 15 – Typical values of inductance between capacitor banks	134
Table 16 – Results of the calibration of the enclosure	155
Table 17 – Temperature rise tests	165
Table 18 – Short-time withstand current tests	165
Table 19 – Peak withstand current tests	165
Table 20 – Short-circuit making current tests	165
Table 21 – Terminal faults: symmetrical test duties	166
Table 22 – Terminal faults: asymmetrical test duties	166
Table 23 – Short-line faults	166
Table 24 – Capacitive current switching	166
Table 25 – First-pole-to-clear factors k_{DD}	170
Table 26 – Pole-to-clear factors for each clearing pole	170