

Edition 1.1 2018-08 CONSOLIDATED VERSION

TECHNICAL REPORT

High-voltage switchgear and controlgear – Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

Document Preview

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

<u>EC TR 62271-306:2012</u>

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

Edition 1.1 2018-08 CONSOLIDATED VERSION

TECHNICAL REPORT

High-voltage switchgear and controlgear – Carols Part 306: Guide to IEC 62271-100, IEC 62271-1 and other IEC standards related to alternating current circuit-breakers

Document Preview

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.130.10

ISBN 978-2-8322-6010-4

Warning! Make sure that you obtained this publication from an authorized distributor.

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>IEC_TR_62271-306:2012</u> https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

Edition 1.1 2018-08 CONSOLIDATED VERSION

REDLINE VERSION

High-voltage switchgear and controlgear – And Source Sourc

Document Preview

IEC TR 62271-306:2012

https://standards.iteh.ai/catalog/standards/iec/a2e71020-046b-4d2d-a7a7-1197ef0ebcf4/iec-tr-62271-306-2012

CONTENTS

FORE	EWORD	14
INTR	ODUCTION to the Amendment	16
1 (General	17
1.1	Scope	17
1.2	2 Normative references	17
2 E	Evolution of IEC standards for high-voltage circuit-breaker	18
3 (Classification of circuit-breakers	22
3.1	General	
3.2	2 Electrical endurance class E1 and E2	
3.3	3 Capacitive current switching class C1 and C2	23
3.4	Mechanical endurance class M1 and M2	24
3.5	5 Class S1 and S2	24
3.6	6 Conclusion	25
4 I	nsulation levels and dielectric tests	25
4.1	I General	25
4.2	2 Longitudinal voltage stresses	29
4.3	B High-voltage tests	29
4.4	Impulse voltage withstand test procedures	
4.5	5 Correction factors	
4.6	Background information about insulation levels and tests	42
4.7	Lightning impulse withstand considerations of vacuum interrupters	45
5 F	Rated normal current and temperature rise	46
5.1	I General	46
5.2	2 Load current carrying requirements 271-306:2012	46
/sta51	3 ds. Temperature rise testing	2271-350
5.4	4 Additional information	53
6	Fransient recovery voltage	54
6.1	Harmonization of IEC and IEEE transient recovery voltages	54
6.2	2 Initial Transient Recovery Voltage (ITRV)	64
6.3	3 Testing	67
6.4	General considerations regarding TRV	69
6.5	5 Calculation of TRVs	80
7 5	Short-line faults	82
7.1	Short-line fault requirements	82
7.2	2 SLF testing	87
7.3	Additional explanations on SLF	90
7.4	Comparison of surge impedances	95
7.5	5 Calculation of actual percentage of SLF breaking currents Test current and	
_	line length tolerances for short-line fault testing	
7.6	5 IRV with parallel capacitance	
8 (Jut-ot-pnase switching	100
8.′	Reference system conditions	100
8.2	2 TRV parameters introduced into Tables 1b and 1c of the first edition of	100
0 0	$IEU \ 0ZZI I^{T}IUU$	102 105
9 3		
9.1	General	

IEC TR 62271-306:2012+AMD1:2018 CSV - 3 - © IEC 2018

9.2	General theory of capacitive current switching	166
9.3	Capacitor bank switching	172
9.4	No-load cable switching	175
9.5	No-load transmission line switching	189
9.6	Voltage factors for capacitive current switching tests	195
9.7	General application considerations	197
9.8	Considerations of capacitive currents and recovery voltages under fault	015
0.0	Evaluations	210
9.9		221
TU Gas		
10.1	Specification	221
10.2	l esting	
10.3	pressure systems	230
11 Mis	cellaneous provisions for breaking tests	234
11.1	Energy for operation to be used during demonstration of the rated operating	
	sequence during short-circuit making and breaking tests	234
11.2	Alternative operating mechanisms	235
12 Rat	ed and test frequency	240
12.1	General	240
12.2	Basic considerations	241
12.3	Applicability of type tests at different frequencies	242
13 <mark>Ter</mark> i	minal faults Symmetrical and asymmetrical currents	245
13.1	General	255
13.2	Arcing time	256
13.3	Symmetrical currents	256
13.4	Asymmetrical currents	263
ps://sta13.51	Double earth fault	270
13.6	Break time	274
14 <mark>Dou</mark>	ible earth fault Synthetic making and breaking tests	275
14.1	General	279
14.2	Current injection methods	280
14.3	Duplicate transformer circuit	284
14.4	Voltage injection methods	286
14.5	Current distortion	289
14.6	Step-by-step method to prolong arcing	304
14.7	Examples of the application of the tolerances on the last current loop based on 4.1.2 and 6.109 of IEC 62271-101:2012	305
15 Tra	asport storage installation operation and maintenance	306
15 110	General	206
10.1	General	306
10.2	Installation	207
10.3		307
15.4	Operation	200
15.5		
15.6	Waintenance	309
15.7	corrosion: information regarding service conditions and recommended test requirements	309
15.8	Electromagnetic compatibility on site	310
16 Indu	uctive load switching	311

16.1 16.2	Conorol	044
16.2	General	311
10.2	Shunt reactor switching	312
16.3	Motor switching	325
16.4	Unloaded transformer switching	330
16.5	Shunt reactor characteristics	336
16.6	System and station characteristics	338
16.7	Current chopping level calculation	339
16.8	Application of laboratory test results to actual shunt reactor installations	344
16.9	Statistical equations for derivation of chopping and re-ignition overvoltages	351
17 Infor	mation and technical requirements relevant for enquiries, tenders and orders.	352
17.1	General	352
17.2	Normal and special service conditions (refer to Clause 2 of IEC 62271- 1:2007)	352
17.3	Ratings and other system parameters (refer to Clause 4 IEC 62271-1:2007).	352
17.4	Design and construction (refer to Clause 5 of IEC 62271-1:2007)	353
17.5	Documentation for enguiries and tenders	
Annex A	(informative) Consideration of DC time constant of the rated short-circuit	
urrent ir	the application of high-voltage circuit-breakers	355
A.1	General	378
A.2	Basic theory	379
A.3	Network reduction	382
A.4	Special case time constants	382
A.5	Guidance for selecting a circuit-breaker	
A.6	Discussion regarding equivalency	393
Α7	Current and TRV waveshape adjustments during tests	395
/ \. /		
A.8	Conclusions	401
A.8 Annex B	Conclusions	401 402
A.8 Annex B	Conclusions	401 402 .7.1.417
A.8 Annex B taB.1rds B.2	Conclusions	401 402 .7.1.417 417
A.8 Annex B taB.1rds B.2 B.3	Conclusions	401 402 417 417 417
A.8 Annex B B.1 ds B.2 B.3 Annex C	Conclusions	401 402 417 417 433
A.8 Annex B B.1 B.2 B.3 Annex C	Conclusions	401 402 417 417 433 437
A.8 Annex B B.1rds B.2 B.3 Annex C C.1	Conclusions	401 402 417 417 433 437
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3	Conclusions	401 402 417 417 433 437
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4	Conclusions	401 402 417 417 433 437
A.8 Annex B a.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5	Conclusions	401 401 417 417 433 437
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D	Conclusions	401 401 402 417 417 433 437
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1	Conclusions	401 401 417 417 433 437 437
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2	Conclusions	401 401 402 417 437 437 437 447 442 442
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3	Conclusions	401 401 417 417 433 437 437 444 444 444 444
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4	Conclusions	401 401 417 417 433 437 437 442 442 442 442 445
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4 Annex E of rated A switching	Conclusions	401 402 417 417 433 437 437 442 442 442 445 456
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4 Annex E of rated v switching F 1	Conclusions	401 401 402 417 417 433 437 437 437 435 435 456 456 456
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4 Annex E x rated x witching E.1 F 2	Conclusions	401 401 402 417 417 433 437 437 442 442 442 442 445 456 456 456
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4 Annex E Frated w switching E.1 E.2 Anney F	Conclusions	401 401 402 417 417 437 437 437 447 445 455 456 456 456
A.8 Annex B B.2 B.3 Annex C C.1 C.2 C.3 C.4 C.5 Annex D D.1 D.2 D.3 D.4 Annex E of rated v switching E.1 E.2 Annex F switching	Conclusions	401 401 402 417 417 433 437 437 435 435 456 456 456 456 456 456

IEC TR 62271-306:2012+AMD1:2018 CSV - 5 -© IEC 2018 F.2 F.3 G.1 H.1 H.2 H.3 Review of TRV for circuit-breakers with opening resistors for various H.4 H.5 H.6 H.7 H.8 H.9 Figure 1 – Probability of acceptance (passing the test) for the 15/2 and 3/9 test series.......32 Figure 2 – Probability of acceptance at 5 % probability of flashover for 15/2 and 3/9 Figure 8 – Disruptive discharge mode of external insulation of switchgear and ec-tr-62271-306-2012 Figure 10 – Evaluation of the steady state condition for the last guarter of the test duration shown in Figure 9......52 Figure 11 – Comparison of IEEE, IEC and harmonized TRVs, example for 145 kV at 100 % *I*_{SC} with *k*_{pp} = 1,3......57 Figure 12 - Comparison of IEEE, IEC and harmonized TRVs with compromise values of u_1 and t_1 , example for 145 kV at 100 % I_{SC} with $k_{DD} = 1,3....60$ Figure 13 – Comparison of TRV's for cable-systems and line-systems63 Figure 14 – Harmonization of TRVs for circuit-breakers < 100 kV......64 Figure 15 – Representation of ITRV and terminal fault TRV66 Figure 16 – Typical graph of line side TRV with time delay and source side with ITRV.......68 Figure 17 – Effects of capacitor size on the short-line fault component of recovery voltage with a fault 915 m from circuit-breaker.....92 Figure 18 – Effect of capacitor location on short-line fault component of transient recovery voltage with a fault 760 m from circuit-breaker......93 Figure 19 - TRV obtained during a L₉₀ test duty on a 145 kV, 50 kA, 60 Hz circuitbreaker......94 Figure 21 – Typical system configuration for out-of-phase breaking for case A101

Figure 22 – Typical system configuration for out-of-phase breaking for Case B	101
Figure 23 – Voltage on both sides during CO under out-of-phase conditions	104
Figure 24 – Fault currents during CO under out-of-phase	104
Figure 25 – TRVs for out-of-phase clearing (enlarged)	105
Figure 64 – Comparison of reference and alternative mechanical characteristics	236
Figure 65 – Closing operation outside the envelope	237
Figure 66 – Mechanical characteristics during a T100s test	238
Figure 75 – General case for shunt reactor switching	312
Figure 76 – Current chopping phenomena	313
Figure 77 – General case first-pole-to-clear representation	314
Figure 78 – Single phase equivalent circuit for the first-pole-to-clear	315
Figure 79 – Voltage conditions at and after current interruption	316
Figure 80 – Shunt reactor voltage at current interruption	317
Figure 81 – Re-ignition at recovery voltage peak for a circuit with low supply side capacitance	319
Figure 82 – Field oscillogram of switching out a 500 kV 135 Mvar solidly earthed shunt reactor	320
Figure 83 – Single-phase equivalent circuit	321
Figure 84 – Motor switching equivalent circuit	327
Figure 87 – Arc characteristic	340
Figure 88 – Rizk's equivalent circuit for small current deviations from steady state	340
Figure 89 – Single phase equivalent circuit	341
Figure 90 – Circuit for calculation of arc instability	342
Figure 91 – Initial voltage versus arcing time	347
Figure 92 – Suppression peak overvoltage versus arcing time	347
Figure 93 – Calculated chopped current levels versus arcing time	347
Figure 94 – Calculated chopping numbers versus arcing time	347
Figure 95 – Linear regression for all test points	348
Figure 96 – Representation of a four-parameter TRV and a delay line	70
Figure 97 – Representation of a specified TRV by a two-parameter reference line and a delay line	71
Figure 98 – Single-phase equivalent circuit for capacitive current interruption	166
Figure 99 – Voltage and current shapes at capacitive current interruption	167
Figure 100 – Voltage and current wave shapes in the case of a restrike	168
Figure 101 – Voltage build-up by successive restrikes	169
Figure 102 – Example of an NSDD during capacitive current interruption	170
Figure 103 – Recovery voltage of the first-pole-to-clear at interruption of a three-phase non-effectively earthed capacitive load	171
Figure 104 – General circuit for capacitor bank switching	172
Figure 105 – Typical circuit for no-load cable switching	176
Figure 106 – Individually screened cable with equivalent circuit	177
Figure 107 – Belted cable with equivalent circuit	177
Figure 108 – Cross-section of a high-voltage cable	178
Figure 109 – Equivalent circuit for back-to-back cable switching	182

IEC TR 62271-306:2012+AMD1:2018 CSV -7-© IEC 2018

Figure 110 – Equivalent circuit of a compensated cable	183
Figure 111 – Currents when making at voltage maximum and full compensation	185
Figure 112 – Currents when making at voltage zero and full compensation	186
Figure 113 – Currents when making at voltage maximum and partial compensation	187
Figure 114 – Currents when making at voltage zero and partial compensation	187
Figure 115 – RMS charging current versus system voltage for different line configurations at 60 Hz	189
Figure 116 – General circuit for no-load transmission line switching	190
Figure 117 – Recovery voltage peak in the first-pole-to-clear as a function of C_1/C_0 , delayed interruption of the second phase	191
Figure 118 – Typical current and voltage relations for a compensated line	193
Figure 119 – Half cycle of recovery voltage	193
Figure 120 – Energisation of no-load lines: basic phenomena	194
Figure 121 – Recovery voltage on first-pole-to-clear for three-phase interruption: capacitor bank with isolated neutral	196
Figure 122 – Example of the recovery voltage across a filter bank circuit-breaker	198
Figure 123 – Typical circuit for back-to-back switching	204
Figure 124 – Example of 123 kV system	205
Figure 125 – Voltage and current relations for capacitor switching through interposed transformer	209
Figure 126 – Station illustrating large transient inrush currents through circuit-breakers from parallel capacitor banks	211
Figure 127 – Fault in the vicinity of a capacitor bank	216
Figure 128 – Recovery voltage and current for first-phase-to-clear when the faulted phase is the second phase-to-clear	217
Figure 129 – Recovery voltage and current for last-phase-to-clear when the faulted phase is the first-phase-to-clear	1.217-201
Figure 130 – Basic circuit for shunt capacitor bank switching	218
Figure 131 – Example of a tightness coordination chart, TC, for closed pressure systems	223
Figure 132 – Interrupting windows and k_p value for three-phase fault in a non-effectively earthed system	258
Figure 133 – Three-phase unearthed fault current interruption	259
Figure 134 – Interrupting windows and k_p values for three-phase fault to earth in an effectively earthed system at 800 kV and below	260
Figure 135 – Interrupting windows and k_p values for three-phase fault to earth in an effectively earthed system above 800 kV.	260
Figure 136 – Simulation of three-phase to earth fault current interruption at 50 Hz	261
Figure 137 – Case 1 with interruption by a first pole (blue phase) after minor loop of current with intermediate asymmetry	265
Figure 138 – Case 2 with interruption of a last pole-to-clear after a major extended loop of current with required asymmetry and longest arcing time	266
Figure 139 – Case 3 with interruption of a last pole-to-clear after a major extended loop of current with required asymmetry but not the longest arcing time	267
Figure 140 – Case 4 with interruption by the first pole in the red phase after a major loop of current with required asymmetry and the longest arcing time (for a first-pole-to-clear).	
Figure 141 – Representation of a system with a double earth fault	270
	-

	– 8 – IEC TR 62271-306:2012+AMD1:2018 © IEC	8 CSV 2018
Figure 142	 Representation of circuit with double-earth fault 	271
Figure 143	 Fault currents relative to the three-phase short-circuit current 	274
Figure 144	 Principle of synthetic testing 	280
Figure 145 circuit-brea	 Typical current injection circuit with voltage circuit in parallel with the test ker 	281
Figure 146 Figure 145.	 Injection timing for current injection scheme with the circuit given in 	282
Figure 147 voltage from	 Examples of the determination of the interval of significant change of arc n the oscillograms 	283
Figure 148	- Transformer or Skeats circuit	284
Figure 149	- Triggered transformer or Skeats circuit	285
Figure 150 with the aux	 Typical voltage injection circuit diagram with voltage circuit in parallel kiliary circuit-breaker (simplified diagram) 	287
Figure 151 parallel with	 TRV waveshapes in a voltage injection circuit with the voltage circuit in the auxiliary circuit-breaker 	288
Figure 152	- Direct test circuit, simplified diagram	290
Figure 153	 Prospective short-circuit current flow 	290
Figure 154	- Distortion current flow	290
Figure 155	- Distortion current	29′
Figure 156	 Simplified circuit diagram for high-current interval 	292
Figure 157 constant are	 Current and arc voltage characteristics for symmetrical current and c voltage 	294
Figure 158 constant are	 Current and arc voltage characteristics for asymmetrical current and c voltage 	298
Figure 159 symmetrica	 Reduction of amplitude and duration of final current loop of arcing for I current and constant arc voltage 	296
Figure 160 symmetrica	 Reduction of amplitude and duration of final current loop of arcing for I current and linearly rising arc voltage 	297
Figure 161 asymmetric	 Reduction of amplitude and duration of final current loop of arcing for al current and constant arc voltage 	298
Figure 162 asymmetric	 Reduction of amplitude and duration of final current loop of arcing for al current and linearly rising arc voltage 	299
Figure 163	- Typical re-ignition circuit diagram for prolonging arc-duration	304
Figure 164 in Figure 16	 Typical waveshapes obtained during a symmetrical test using the circuit 	308
Figure 165	 Unloaded transformer switching circuit representation 	333
Figure 166 voltage (rig	 Transformer side oscillation (left) and circuit-breaker transient recovery ht) 	333
Figure 167	– Re-ignition loop circuit	335
Figure A.1 -	- Simplified single-phase circuit	379
Figure A.2 - initiation of special case	 Percentage DC component in relation to the time interval from the the short-circuit for the standard time constants and for the alternative e time constants (from IEC 62271-100) 	380
Figure A.3 - breaker exh	- First valid operation in case of three-phase test (τ = 45 ms) on a circuit- nibiting a very short minimum arcing time	390
Figure A.4 - exhibiting a	 Second valid operation in case of three-phase test on a circuit-breaker very short minimum arcing time 	39(
Figure A.5 -	 Third valid operation in case of three-phase test on a circuit-breaker very short minimum arcing time 	39

IEC TR 62271-306:2012+AMD1:2018 CSV - 9 - © IEC 2018

Figure A.6 – Plot of 60 Hz currents with indicated DC time constants	
Figure A.7 – Plot of 50 Hz currents with indicated DC time constants	
Figure A.8 – Three-phase testing of a circuit-breaker with a DC time constant rated short-circuit breaking current longer than the test circuit time constant	ant of the t397
Figure A.9 – Single phase testing of a circuit-breaker with a DC time constant rated short-circuit breaking current shorter than the test circuit time constant	ant of the nt399
Figure A.10 – Single-phase testing of a circuit-breaker with a DC time cons rated short-circuit breaking current longer than the test circuit time constant	tant of the t401
Figure B.1 – Single-line diagram of a power plant substation	418
Figure B.2 – Performance chart (power characteristic) of a large generator	419
Figure B.3 – Circuit-breaker currents i and arc voltages u_{arc} in case of a th fault following underexcited operation: non-simultaneous fault inception	ree-phase 419
Figure B.4 – Circuit-breaker currents i and arc voltages u_{arc} in case of a t fault following underexcited operation: Simultaneous fault inception at third voltage zero	hree-phase phase 420
Figure B.5 – Circuit-breaker currents i and arc voltages u_{arc} in case of a th fault following underexcited operation: Simultaneous fault inception at third voltage crest.	ree-phase phase 420
Figure B.6 – Circuit-breaker currents <i>i</i> and arc voltages u_{arc} under condition simultaneous three-phase fault, underexcited operation and failure of a ger transformer.	ons of a non- nerator
Figure B.7 – Circuit-breaker currents <i>i</i> and arc voltages <i>u</i> arc under condition simultaneous three-phase fault following full load operation	ons of a non-
Figure B.8 – Circuit-breaker currents <i>i</i> and arc voltages <i>u</i> arc under condition non-simultaneous three-phase fault following no-load operation	ons of a 423
Figure B.9 – Circuit-breaker currents <i>i</i> and arc voltages <i>u</i> arc under condition unsynchronized closing with 90° differential angle	ons of 424
Figure B.10 – Comparison of TRV test curve for out-of-phase (red) and sys short-circuit (green)	tem-source
Figure B.11 – Prospective (inherent) current	426
Figure B.12 – Arc voltage-current characteristic for a SF ₆ puffer type interr	upter427
Figure B.13 – Assessment function $e(t)$	427
Figure B.14 – Network with contribution from generation and large motor lo	ad428
Figure B.15 – Computer simulation of a three-phase simultaneous fault with contribution from generation and large motor load	n 429
Figure B.16 – Short-circuit at voltage zero of phase A (maximum DC components) phase A) with transition from three-phase to two-phase fault	onent in 430
Figure B.17 – Short-circuit at voltage crest of phase B (phase B totally sym and transition from three-phase to two-phase fault	metrical) 431
Figure B.18 – Comparison of current zero crossing with (green) and withou influence of arc voltage	t (blue) 432
Figure B.19 – Recording of delayed current zero on A and B phase in the p a line-to-earth fault on C phase	resence of 434
Figure B.20 – Influence of arc voltage of SF ₆ vs. air-blast circuit-breaker	
Figure B.21 – Earthing of the shunt reactor using a 100 Ω resistor for 200 r time	ns insertion 436
Figure D.1 – Current limiting reactor location	
Figure D.2 – Circuit for <i>k</i> _{pp} calculation	
Figure D.3 – Variation of k_{pp} with ratio X_R/X_1	

- 10 - IEC TR 62271-306:2012+AMD1:2018 CSV © IEC 2018 Figure D.6 – Series reactor application case......451 Figure D.7 – TRV calculation circuit452 Figure D.8 – Circuit-breaker with T30 source and varying values of C_R......453 Figure D.9 – Circuit-breaker TRV with source TRV $k_{af} = 1,4$ p.u. (down from 1,54 p.u.) and t₃ unchanged at 80 µs......454 Figure D.10 – Circuit-breaker TRV with source TRV k_{af} unchanged at 1,54 p.u. and t_3 Figure D.11 – Circuit-breaker TRV with source TRV k_{af} = 1,4 p.u. and t_3 = 110 µs.....455 Figure F.1 – Test-duty 2 combination for Case 1......465 Figure F.3 – TD1 combination for case b)......466 Figure F.7 – TD1/TD2 combination for Case 2......471 Figure G.2 – Equivalent circuit for determination of tan δ , power factor and quality Figure H.6 – Example of a calculation of the TRV across the main interrupter for T100 Figure H.7 – Example of a calculation of the TRV across the main interrupter for T10 Figure H.8 – Typical TRV waveshapes in the time domain using the Laplace transform488 Figure H.9 – TRV plots for resistor interrupter for a circuit-breaker with opening Figure H.10 – Typical waveforms for out-of-phase interruption – Network 1 without Figure H.11 – Typical waveforms for out-of-phase interruption – Network 1 with Figure H.12 – Typical waveforms for out-of-phase interruption – Network 2 without Figure H.13 – Typical waveforms for out-of-phase interruption – Network 2 with Figure H.14 – Typical recovery voltage waveshape of capacitive current switching on Figure H.15 - Recovery voltage waveforms across the resistor interrupter during