TECHNICAL REPORT

ISO TR 10501

First edition 1993-12-15

Thermoplastics pipes for the transport of liquids under pressure — Calculation of head losses

iTeh STANDARD PREVIEW

Tubes en matières thermoplastiques pour le transport de liquides sous pression — Calcul des pertes de charge

ISO/TR 10501:1993

https://standards.iteh.ai/catalog/standards/sist/75f134b0-bc4d-474f-883f-f6a6032cefeb/iso-tr-10501-1993

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The main task of technical committees is to prepare International Standards, but in exceptional circumstances a technical committee may propose the publication of a Technical Report of one of the following types:

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical development or where for any other reason there is the future but not immediate possibility bc4d-474f-883f of an agreement on an International Standard 32cefeb/iso-tr-10501-1993
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/TR 10501, which is a Technical Report of type 3, was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Sub-Committee SC 2, *Plastics pipes and fittings for water supplies*.

© ISO 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Thermoplastics pipes for the transport of liquids under pressure — Calculation of head losses

Scope

This Technical Report gives a method of calculating head loss in the transport of liquids under pressure hydraulically in thermoplastics pipes.

- **head loss**, Δh : Change in pressure head between two sections of a horizontal pipe due to liquid flow through the pipe.
- **head drop**, J: Head loss per unit length of pipe.

PREVIEW

Symbols and units

The formulae given in the Technical Report apply to the transport of water under pressure or to all os. other liquids of the same dynamic viscosity, at temperatures of up to 45°C. ISO/TR 10501

iteh.ai The symbols and units used in this Technical

Report are given in Table 1.

2 **Definitions**

https://standards.iteh.ai/catalog/standards/sist/75f134b0-bc4d-474f-883f-

f6a6032cefeb/iso-tr-10501-1993

Table 1

For the purposes of this Technical Report, the following definitions apply.

- flowrate, q_v : Volume of water flowing through the pipe per unit time.
- 2.2 steady flow: Flow in which the flowrate through a measuring section does not vary with time.
- average velocity, v: Flowrate through the pipe divided by the reference cross-section of the pipe. It is calculated by dividing the actual flowrate through the pipe by the cross-section of the pipe.
- 2.4 reference cross-section of the pipe, A: Area of the circle with a diameter equal to the average internal diameter of the pipe. The free cross-sectional area of the pipe is calculated from the inside diameter of the pipe.

Sub- clause	Quantity	Symbol	Unit
2.1	Flowrate	$q_{\scriptscriptstyle V}$	m³/h
2.3	Average velocity	v	m/s
2.4	Average internal diameter	d	m
2.5	Head loss	Δh	m
2.6	Head drop	J	m/m
4.1	Reynolds number	Re	dimension- less
4.1	Kinematic viscosity	ν	m²/s
4.2	Pipe length	l	m
4.3	Temperature of liquid	t	°C
4.3	Temperature correction factor	$k_{\scriptscriptstyle t}$	dimension- less

Method of calculation

Formulae for calculating head drop

- **4.1.1** The head drop for water, J_o , in metres per metre, at a temperature of 20°C, is calculated using one of the following formulae:
- 4.1.1.1 Where the Reynolds number 1) lies within the range

$$4 \times 10^3 \le Re < 1,5 \times 10^5$$
:

$$J_{\circ} = 5.37 \times 10^{-4} (d^{-1.24} v^{1.76})$$

4.1.1.2 Where the Reynolds number¹⁾ lies within the range

$$1.5 \times 10^5 \le Re \le 10^6$$
:

$$J_{\circ} = 5.79 \times 10^{-4} (d^{-1.20} v^{1.80})$$

4.1.2 The head drop J_x for a liquid x which TR 10

calculating head loss in pipes are given in annex A.

NOTE 1 - The various formulae generally used in ARD PREVIEW

differs from that of waterhijs calculated by tahestandar following formula:

$$J_{x} = J_{o} \left(\frac{v_{x}}{v_{w}} \right)^{b}$$

where

- J_{x} is the head drop for a specific liquid;
- $J_{\rm o}$ is the head drop for water at a temperature of 20°C;
- v, is the kinematic viscosity of a specific liquid at the desired temperature;
- $v_{\rm w}$ is the kinematic viscosity of water at a temperature of 20°C.

Exponent b has the following values:

a) when the Reynolds number lies within the range

$$4 \times 10^3 \le Re < 1.5 \times 10^5$$
:

$$b = 0.24$$

b) when the Reynolds number lies within the range

$$1,5 \times 10^5 \le Re \le 10^6$$
:

$$b = 0.20$$

4.2 Formula for calculating head loss

The head loss Δh of a liquid column is calculated from the following formula:

$$\Delta h = Jl$$

(standard 4.3 te Formula for temperature correction

The formulae for calculation of J given in 4.1 relate to the flow of water at a temperature of 20°C₁₋₁₉₉₃

When the water temperature differs from 20°C, the value of J is determined by applying the following temperature correction formula:

$$J_t = k_t J_0$$

where J_t is the head drop at temperature t.

4.3.1 When the Reynolds number lies within the range

$$4 \times 10^3 \le Re < 1.5 \times 10^5$$

the k_i values given in Table 2 should be taken.

¹⁾ See formula for Reynolds number in annex A.

Table 2

Temperature of water (t) (°C)	Temperature correction factor (k_i)
0	1,148
5	1,105
10	1,067
15	1,033
20	1,000
25	0,972
30	0,947
35	0,925
40	0,904
45	0,885

Table 3

Temperature of water (t) (°C)	Temperature correction factor (k_{ι})
0	1,122
5	1,087
10	1,055
15	1,027
20	1,000
25	0,977
30	0,956
35	0,937
40	0,919
45	0,903

4.3.2 When the Reynolds number lies within the range

 $1.5 \times 10^5 \le Re \le 10^6$

the k_t values given in Table 3 should be taken.

NOTE 2 — For liquids other than water, it is not necessary to specify special methods for calculating J, since the formula given in 4.1.2 can also be used for variations in the temperature of the liquid. This is due to the fact that the temperature in the formula is expressed in the kinematic viscosity of the specific liquid at the desired temperature.

(standards.iteh.ai)

ISO/TR 10501:1993 https://standards.iteh.ai/catalog/standards/sist/75f134b0-bc4d-474f-883f-f6a6032cefeb/iso-tr-10501-1993

Annex A

Formulae used in calculations

This annex gives a number of formulae generally used for calculating head losses in pipes, caused by the flow of liquid.

The formulae given in A.1.1 to A.1.10 are generalized formulae applicable to all types of pipe. The formulae given in A.1.11 and A.1.12 were developed especially for plastics pipes.

A.1 Head loss formulae

A.1.1 Chezy formula

$$V = A\sqrt{r_{\rm h}J}$$

where

A.1.6 Hazen-Williams formula (in the metric

iTeh STANDAR SYSTEM REVIEW is the velocity;

is the hydraulic radius; (standards.iteh.2)16 x $10^7 (v^{-1,852} C^{-1,852} d^{-1,167})$

is the head drop;

ISO/TR 1050 where C is the Hazen-Williams coefficient. is the coefficient. https://standards.iteh.ai/catalog/standardwhiich depends on the pipe.

A.1.2 Hagen and Poiseuille formula (in the metric system)

$$J = 32 \left(\frac{vv}{gd_i^2} \right)$$

where

 d_i is the internal diameter of the pipe;

is the dynamic viscosity:

is the gravitational acceleration. g

A.1.3 Reynolds number

$$Re = \frac{vd_i}{v}$$

A.1.4 Von Karman formula

$$\frac{1}{\sqrt{\lambda}} = 2 \log \left(\frac{2,51}{Re\sqrt{\lambda}} \right)$$

where λ is a function of the Reynolds number and of the relative roughness k/d where k is the roughness of the pipe wall.

A.1.5 Colebrook formula

$$\frac{1}{\sqrt{\lambda}} = -2 \log \left(\frac{k}{3,7d} + \frac{2,51}{Re\sqrt{\lambda}} \right)$$

where k is generally taken between 0,001 and 0,007 for plastics pipes.

A.1.7 Strickler formula (also known as the Manning-Strickler formula)

$$V = k r_{\rm h}^{2/3} J^{1/2}$$

A.1.8 Scimemi formula (in the metric system)

$$V = 61.5 d^{0.68} J^{0.56}$$

A.1.9 Blasius formula

$$\lambda = 0.3164 \, Re^{-0.25}$$

A.1.10 Tison formula (in the metric system)

$$J = 0.000545 \, v^{1.75} \, d^{-1.25}$$

or

$$V = 73.3 d^{0.714} J^{0.571}$$

A.1.11 Formulae proposed by SII (Israel) for flow of water in plastics pipes (in the metric system)

(1)
$$J_o = 0.518 \times 10^{-3} (v^{1.76} d^{-1.24})$$

or

$$v = 73.6 d^{0.705} J^{0.568}$$

for Reynolds number range

$$4 \times 10^3 \le Re < 1,5 \times 10^5$$

(2)
$$J_0 = 0.590 \times 10^{-3} \left(v^{1.81} d^{-1.119} \right)$$

or

$$V = 60.8 d^{0.618} J^{0.552}$$

for Reynolds number range

$$1.5 \times 10^5 \le Re \le 10^6$$

A.2 Formulae for plastics pipes proposed in this Technical Report

The formulae given in 4.1 proposed by France are almost identical to formulae A.1.10, A.1.11 and A.1.12 cited above.

The values for head losses for water flow in plastics pipes published in the technical literature are generally similar to those obtained from the formulae given in 4.1. In addition, it should be noted that laboratory test measurements of head losses in plastics pipes, such as PVC and polyethylene, have given results which are very close to those obtained by the theoretical calculcation when using the formulae proposed in 4.1.

iTeh STANDARD PREVIEW

A.1.12 Formula proposed (byan SNY ds.iteh.ai) (Switzerland) for flow of water in plastics

pipes (in the metric system)

ISO/TR 10501:1993

https://standards.iteh.ai/catalog/standards/sist/75f134b0-bc4d-474f-883f-
$$J = \frac{\pi}{4} \left(k v^{1,75} d^{-1,25} \right)$$
 f6a6032cefeb/iso-tr-10501-1993

or

$$V = k' d^{0,714} J^{0,571}$$

ISO/TR 10501:1993(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/TR 10501:1993 https://standards.iteh.ai/catalog/standards/sist/75f134b0-bc4d-474f-883f-f6a6032cefeb/iso-tr-10501-1993

UDC 621.643.2-036.743:620.16:532.55

Descriptors: fluid pipelines, pipes (tubes), pressure pipes, plastics products, thermoplastic resins, plastic tubes, determination, head losses, rules of calculation.

Price based on 5 pages