SLOVENSKI STANDARD SIST ISO/TR 10501:1995
 01-november-1995

Plastomerne cevi za transport tekočin pod tlakom - Izračun tlačnih izgub

Thermoplastics pipes for the transport of liquids under pressure -- Calculation of head losses

Tubes en matières thermoplastiques pour le transport de liquides sous pression -- Calcul des pertes de charge (standards.iteh.ai)

Ta slovenski standard je istoveten ZIS: ISO/TSO/TR 10501:1993
17c19b0d82b8/sist-iso-tr-10501-1995

ICS:

23.040.20 Cevi iz polimernih materialov Plastics pipes

SIST ISO/TR 10501:1995
en

2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO/TR 10501:1995
https://standards.iteh.ai/catalog/standards/sist/3ca096f0-1 1f64-46bb-a6e3-
17c19b0d82b8/sist-iso-tr-10501-1995

TECHNICAL REPORT

ISO

Thermoplastics pipes for the transport of liquids under pressure - Calculation of head losses

iTeh STANDARD PREVIEW
 Gubes en matièfes thermoplastiques pour le transport de liquides sous pression - Calcul des pertes de charge

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The main task of technical committees is to prepare International Standards, but in exceptional circumstances a technical committee may propose the publication of a Technical Report of one of the following types: VIEW

- type 1, when the required support cannot-be obtained for the publication of an International Standard, despite repeated efforts: (11.al)
- type 2 , when the subject is still under technicaldevelopment opswhere for any other reason there is/ the future but not immediate possibilityl lf4-46bb-a6e3of an agreement on an International Standardod82b8/sist-iso-tr-10501-1995
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/TR 10501, which is a Technical Report of type 3, was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the transport of fluids, Sub-Committee SC 2, Plastics pipes and fittings for water supplies.

[^0]All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case Postale $56 \cdot \mathrm{CH}-1211$ Genève 20 - Switzerland
Printed in Switzerland

Thermoplastics pipes for the transport of liquids under pressure - Calculation of head losses

1 Scope

This Technical Report gives a method of calculating head loss in the transport of liquids under pressure in hydraulically smooth thermoplastics pipes.

The formulae given in the Technical Report apply to the transport of water under pressureat to all other liquids of the same dynamic viscosity, at temperatures of up to $45^{\circ} \mathrm{C}$.
2.5 head loss, Δh : Change in pressure head between two sections of a horizontal pipe due to liquid flow through the pipe.
2.6 head drop, J : Head loss per unit length of pipe.

3 Symbols and units
The symbols and units used in this Technical Report are given in Table 1.

2 Definitions

https://standards.iteh.ai/catalog/standards/sist/3ca096f0-1 1f64-46bb-a6e3-

For the purposes of this Technical Report, the following definitions apply.
2.1 flowrate, q_{V} : Volume of water flowing through the pipe per unit time.
2.2 steady flow : Flow in which the flowrate through a measuring section does not vary with time.
2.3 average velocity, v : Flowrate through the pipe divided by the reference cross-section of the pipe. It is calculated by dividing the actual flowrate through the pipe by the cross-section of the pipe.
2.4 reference cross-section of the pipe, A : Area of the circle with a diameter equal to the average internal diameter of the pipe. The free cross-sectional area of the pipe is calculated from the inside diameter of the pipe.

Sub- clause	Quantity	Symbol	Unit
2.1	Flowrate	q_{V}	$\mathrm{~m}^{3} / \mathrm{h}$
2.3	Average velocity 2.4	v	$\mathrm{~m} / \mathrm{s}$
2.5	Average internal diameter	d	m
2.6	Head loss Head drop	$J h$	m
4.1	Reynolds number	$R e$	m / m dimension- less
4.1	Kinematic viscosity	v	$\mathrm{~m}^{2 / \mathrm{s}}$
4.2	Pipe length 4.3Temperature of liquid	t	m
4.3	Temperature Terrection factor	k_{t}	${ }^{\circ} \mathrm{C}$ cimension- less

4 Method of calculation

4.1 Formulae for calculating head drop

4.1.1 The head drop for water, J_{0}, in metres per metre, at a temperature of $20^{\circ} \mathrm{C}$, is calculated using one of the following formulae:
4.1.1.1 Where the Reynolds number ${ }^{11}$ lies within the range
$4 \times 10^{3} \leq \operatorname{Re}<1,5 \times 10^{5}$:

$$
J_{\mathrm{o}}=5,37 \times 10^{-4}\left(d^{-1,24} v^{1.76}\right)
$$

4.1.1.2 Where the Reynolds number ${ }^{11}$ lies within the range

$$
1,5 \times 10^{5} \leq R e \leq 10^{6}:
$$

$$
J_{o}=5,79 \times 10^{-4}\left(d^{-1,20} v^{1,80}\right)
$$

Exponent b has the following values:

a) when the Reynolds number lies within the range
$4 \times 10^{3} \leq \operatorname{Re}<1,5 \times 10^{5}$:

$$
b=0,24
$$

b) when the Reynolds number lies within the range

$$
\begin{gathered}
1,5 \times 10^{5} \leq R e \leq 10^{6}: \\
b=0,20
\end{gathered}
$$

4.2 Formula for calculating head loss

The head loss Δh of a liquid column is calculated from the following formula:

$$
\Delta h=J l
$$

NOTE 1 - The various formuláe generally used in ARD PREVIEW calculating head loss in pipes are given in annex A .

(Staindards.3teFormula for temperature correction

4.1.2 The head drop J_{x} for a liquid x which $0 / T \mathrm{I} ~ 1$ differs from that of water is calculated by the following formula:

$$
J_{\mathrm{x}}=J_{\mathrm{o}}\left(\frac{v_{\mathrm{x}}}{v_{\mathrm{w}}}\right)^{b}
$$

where
J_{x} is the head drop for a specific liquid;
J_{0} is the head drop for water at a temperature of $20^{\circ} \mathrm{C}$;
v_{x} is the kinematic viscosity of a specific liquid at the desired temperature;
v_{w} is the kinematic viscosity of water at a temperature of $20^{\circ} \mathrm{C}$.

The formulae for calculation of J given in 4.1 relate to the flow of water at a temperature of $20^{\circ} \mathrm{C}$
When the water temperature differs from $20^{\circ} \mathrm{C}$, the value of J is determined by applying the following temperature correction formula :

$$
J_{t}=k_{t} J_{o}
$$

where J_{t} is the head drop at temperature t.
4.3.1 When the Reynolds number lies within the range
$4 \times 10^{3} \leq R e<1,5 \times 10^{5}$,
the k_{t} values given in Table 2 should be taken.

[^1]Table 2

Temperature of water (t) $\left({ }^{\circ} \mathrm{C}\right)$	Temperature correction factor $\left(k_{t}\right)$
0	1,148
5	1,105
10	1,067
15	1,033
20	1,000
25	0,972
30	0,947
35	0,925
40	0,904
45	0,885

4.3.2 When the Reynolds number lies within the range
$1,5 \times 10^{5} \leq R e \leq 10^{6}$, the k_{t} values given in Table 3 should be taken.

Table 3

Temperature of water (t) $\left({ }^{\circ} \mathrm{C}\right)$	Temperature correction factor $\left(k_{t}\right)$
0	1,122
5	1,087
10	1,055
15	1,027
20	1,000
25	0,977
30	0,956
35	0,937
40	0,919
45	0,903

NOTE 2 - For liquids other than water, it is not necessary to specity special methods for calculating J, since the formula given in 4.1.2 can also be used for variations in the temperature of the liquid. This is due to the fact that the temperature in the formula is expressed in the kinematic viscosity of the specific liquid at the desired temperature.
(standards.iteh.ai)
SIST ISO/TR 10501:1995
https://standards.iteh.ai/catalog/standards/sist/3ca096f0-1 1f64-46bb-a6e3-
17c19b0d82b8/sist-iso-tr-10501-1995

Annex A

Formulae used in calculations

This annex gives a number of formulae generally used for calculating head losses in pipes, caused by the flow of liquid.
The formulae given in A.1.1 to A.1.10 are generalized formulae applicable to all types of pipe. The formulae given in A.1.11 and A.1.12 were developed especially for plastics pipes.

A. 1 Head loss formulae

A.1.1 Chezy formula

$$
v=A \sqrt{r_{\mathrm{h}} J}
$$

where

v is the velocity;
 r_{h} is the hydraulic radius;
 J is the head drop;
 A is the coeffieient.
 A.1.2 Hagen and Poiseuille formula (in the metric system)

iTeh STANDARsystem)

where λ is a function of the Reynolds number and of the relative roughness k / d where k is the roughness of the pipe wall.

A.1.5 Colebrook formula

$$
\frac{1}{\sqrt{\lambda}}=-2 \log \left(\frac{k}{3,7 d}+\frac{2,51}{\operatorname{Re} \sqrt{\lambda}}\right)
$$

where k is generally taken between 0,001 and 0,007 for plastics pipes.

$$
J=32\left(\frac{v v}{g d_{\mathrm{i}}{ }^{2}}\right)
$$

where
d_{i} is the internal diameter of the pipe;
v is the dynamic viscosity;
g is the gravitational acceleration.

A.1.3 Reynolds number

$$
R e=\frac{v d_{\mathrm{i}}}{v}
$$

A.1.4 Von Karman formula

$$
\frac{1}{\sqrt{\lambda}}=2 \log \left(\frac{2,51}{\operatorname{Re} \sqrt{\lambda}}\right)
$$

A.1.7 Strickler formula (also known as the Manning-Strickler formula)

$$
v=k r_{\mathrm{h}}^{2 / 3} J^{1 / 2}
$$

A.1.8 Scimemi formula (in the metric system)

$$
v=61,5 d^{0.68} J^{0.56}
$$

A.1.9 Blasius formula

$$
\lambda=0,3164 R e^{-0,25}
$$

A.1.10 Tison formula (in the metric system)

$$
J=0,000545 v^{1,75} d^{-1,25}
$$

or

$$
v=73,3 d^{0,714} J^{0,571}
$$

[^0]: (C) ISO 1993

[^1]: ${ }^{1)}$ See formula for Reynolds number in annex A.

