

SLOVENSKI STANDARD SIST ISO 10545-2:1995

01-december-1995

Keramične ploščice - 2. del: Mere in kakovost površine

Ceramic tiles -- Part 2: Determination of dimensions and surface quality

Carreaux et dalles céramiques -- Partie 2: Détermination des caractéristiques dimensionnelles et de la qualité de surface (standards.iteh.ai)

Ta slovenski standard je istoveten z: ISO 10545-2:1995

https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0cedcec29b766/sist-iso-10545-2-1995

<u>ICS:</u>

91.100.23 Keramične ploščice

Ceramic tiles

SIST ISO 10545-2:1995

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 10545-2:1995 https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0cedcec29b766/sist-iso-10545-2-1995

SIST ISO 10545-2:1995

4

INTERNATIONAL STANDARD

ISO 10545-2

First edition 1995-11-01

Ceramic tiles —

Part 2:

Determination of dimensions and surface quality

iTeh STANDARD PREVIEW Carreaux et dalles céramiques — (standards.iteh.ai) Partia 2: Détarmination des caractéristiques de

Partie 2: Détermination des caractéristiques dimensionnelles et de la qualité de surface

https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0cedcec29b766/sist-iso-10545-2-1995

Reference number ISO 10545-2:1995(E)

SIST ISO 10545-2:1995

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10545-2 was prepared by Technical Committee ISO/TC 189, *Ceramic tile*. (standards.iteh.ai)

ISO 10545 consists of the following parts, under the general title *Ceramic tiles*: <u>SIST ISO 10545-2:1995</u>

https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0-— Part 1: Sampling and basis for acceptance/cec29b766/sist-iso-10545-2-1995

- Part 2: Determination of dimensions and surface quality
- Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density
- Part 4: Determination of modulus of rupture and breaking strength
- Part 5: Determination of impact resistance by measurement of coefficient of restitution
- Part 6: Determination of resistance to deep abrasion for unglazed tiles

© ISO 1995

International Organization for Standardization

Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

4

- Part 7: Determination of resistance to surface abrasion for glazed tiles
- Part 8: Determination of linear thermal expansion
- Part 9: Determination of resistance to thermal shock
- Part 10: Determination of moisture expansion
- Part 11: Determination of crazing resistance for glazed tiles
- Part 12: Determination of frost resistance
- Part 13: Determination of chemical resistance
- Part 14: Determination of resistance to stains
- Part 15: Determination of lead and cadmium given off by glazed tiles
- Part 16: Determination of small colour differences
- Part 17: Determination of coefficient of friction

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST ISO 10545-2:1995</u> https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0cedcec29b766/sist-iso-10545-2-1995

SIST ISO 10545-2:1995

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iteh.ai)

SIST ISO 10545-2:1995 https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0cedcec29b766/sist-iso-10545-2-1995

Ceramic tiles —

Part 2:

Determination of dimensions and surface quality

Scope

This part of ISO 10545 specifies methods for determining the dimensional characteristics (length, width, thickness, straightness of sides, rectangularity, surface flatness) and the surface quality of ceramic tiles.

For oblong tiles, each similar pair of sides of a tile provides the appropriate average dimension of the tile, i.e. an average of two measurements. The average dimensions for length and width of the sample are the average of 20 measurements each.

2.5 Test report Tiles with areas less than 4 cm² are excluded from The test report shall include the following information: measurements of length, width, straightness of sides, llen.ar rectangularity and surface flatness.

a) reference to this part of ISO 10545;

Spacer lugs and glaze blobs and other irregularities of 10545-2:1995 the sides shall be ignored when a measuring talength dards/sig/73a0description of the tiles; width, straightness of sides, rectangularitycif9thesest-iso-10545-2-199 are subsequently hidden in the joints after fixing (installation).

2 Measurement of length and width

2.1 Apparatus

2.1.1 Vernier calipers, or other suitable apparatus for linear measurement.

2.2 Test specimens

Ten whole tiles shall be submitted to measurements.

2.3 Procedure

Measure, to the nearest 0,1 mm, each side of the tile under test, at positions 5 mm from the corners.

2.4 Expression of results

The average dimension of square tiles is the average of four measurements. The average dimension of the sample is the average of 40 measurements.

- c) all individual measurements of length and width;
- d) the average size of each test specimen for square tiles, and the average length and width for each oblong tile;
- e) the average size of the 10 test specimens for square tiles, and the average length and width for oblong tiles;
- f) the deviation, as a percentage, of the average size of each tile (two or four sides) from the work size;
- g) the deviation, as a percentage, of the average size of each tile (two or four sides) from the average size of the 10 test specimens (20 or 40 sides).

Measurement of thickness 3

3.1 Apparatus

3.1.1 Micrometer screw gauge with anvils, of 5 mm to 10 mm diameter, or other suitable apparatus.

3.2 Test specimens

Ten whole tiles shall be submitted to measurements.

3.3 Procedure

For all tiles, except those with uneven surfaces, draw diagonals between the corners and measure the thickness at the thickest point within each of the four segments. Measure, to the nearest 0,1 mm, the thickness of each tile under test in four positions.

For tiles with uneven surfaces, draw four lines at right angles across the face at distances of 0,125; 0,375; 0,625 and 0,875 times the length measured from the end. Measure the thickness at the thickest point on each line.

3.4 Expression of results

For all the tiles, the average dimension of each individual tile is the average of four measurements. The average thickness of the sample is the average of 40 measurements.

3.5 Test report

$\frac{C}{I} \times 100$

where

- is the deviation from straightness at the centre Cof the measured side:
- *L* is the length of the measured side.

4.2 Apparatus

4.2.1 Apparatus, as shown in figure 1, or any other suitable instrument.

The dial gauge (D_F) (see 5.4) is used for measuring the straightness of sides.

4.2.2 Calibrating plate, of accurate dimensions and with straight, flat sides.

4.3 Test specimens

measured. (See figure 1.)

Ten whole tiles shall be submitted to measurements.

(4.2.1) so that, when a tile is placed in the apparatus,

iTeh STANDARD PREVIEW 4.4 Procedure

(standards.iteh.ai) Select an apparatus of the appropriate dimensions

cedcec29b766/sist-

The test report shall include the following information: ISO 10

- on the supporting stude ($S_{A,C}S_B S_C$), the locating stude reference to this part of ISO 10545 ards.iteh.ai/catalog/standa a) (IA, IB, Je) are 5 mm from each corner of the side being
- b) a description of the tiles;
- all individual measurements of thickness; C)
- d) the average thickness of each tile;
- e) the deviation, as a percentage or in millimetres (as required by the product standard), of the average thickness of each tile from the work size thickness.

Measurement of straightness of sides

4.1 Definition

For the purposes of this part of ISO 10545, the following definition applies.

4.1.1 straightness of sides: The deviation from straightness of the centre of the side in the plane of the tile.

The measurement is only relevant to the straight sides of tiles (figure 2) and is calculated as a percentage, using the formula

Fit the appropriate calibrating plate (4.2.2) exactly into position on the instrument, and adjust the dial gauge reading to a suitable known value.

Remove the calibrating plate, place the proper surface of the tile on the locating studs in the apparatus, and record the dial gauge reading in the centre of the side. If the tile is square, rotate it to obtain four measurements. Repeat this procedure for each tile being tested. In the case of oblong tiles, use separate instruments of the appropriate dimensions to measure lengths and widths. Measure to the nearest 0,1 mm.

4.5 Test report

The test report shall include the following information:

- a) reference to this part of ISO 10545;
- b) a description of tiles;
- c) all individual measurements of straightness of sides;
- d) the maximum deviation from straightness, as a percentage related to the corresponding work sizes.

5 Measurement of rectangularity

5.1 Definition

For the purposes of this part of ISO 10545, the following definition applies.

5.1.1 deviation from rectangularity: If a corner of a tile is placed against the angle of an accurate calibrating plate (see figure 3), deviation from rectangularity is calculate as a percentage, using the formula

$$\frac{\delta}{L} \times 100$$

where

- δ is the deviation of the outer corner of the side of the tile (measured 5 mm from the corner) from the inner side of the calibrating plate;
- L is the length of the adjacent side of the tile.

5.2 Apparatus

tested. In the case of oblong tiles, use separate instruments of the appropriate dimensions to measure lengths and widths. Measure to the nearest 0,1 mm.

5.5 Test report

The test report shall include the following information:

- a) reference to this part of ISO 10545;
- b) a description of the tiles;
- c) all individual measurements of rectangularity;
- d) the maximum deviation from rectangularity, as a percentage related to the corresponding work sizes.

6 Measurements of surface flatness

(curvature and warpage)

be measured on the back.

6.1 Definitions

5.2.1 Apparatus, as shown in figure 1, or any other suitable instrument. **(standards.iten.al)** For the purposes of this part of ISO 10545, the following definitions apply.

The dial gauge (D_A) is used for measuring rectangularity. <u>SIST ISO 10545-2three</u> positions on the surface of tiles. https://standards.iteh.ai/catalog/standards/sist/73606467-d92b-4808-a8a0-

5.2.2 Calibrating plate, of accurate dimensions and st-iso-10 less that have relief on the proper surface preventing with straight, flat sides.

5.3 Test specimens

Ten whole tiles shall be submitted to measurements.

5.4 Procedure

Select an apparatus of the appropriate dimensions (5.2.1) so that, when a tile is placed in the apparatus, on the supporting studs (S_A , S_B , S_C), the locating studs (I_A , I_B , I_C) are 5 mm from each corner of the side adjacent to the side being measured. (See figure 1.) The plunger of the dial gauge (DA) shall also be 5 mm from the corner of the tile on the side being measured. (See figure 1.)

Fit the appropriate calibrating plate (5.2.2) exactly into position on the instrument, and adjust the dial gauge reading to a suitable known value.

Remove the calibrating plate, place the proper surface of the tile on the locating studs in the apparatus, and record the dial gauge reading 5 mm from the corner. If the tile is square, rotate it to obtain four measurements. Repeat this procedure for each edge of a square tile. Repeat this procedure for each tile being **6.1.2 edge curvature:** The departure of the centre of a tile from the plane in which three of the four corners lie. (See figure 4.)

6.1.3 centre curvature: The departure of the centre of one edge of a tile from the plane in which three of the four corners lie. (See figure 5.)

6.1.4 warpage: The departure of the fourth corner of the tile from the plane in which the other corners lie. (See figure 6.)

6.2 Apparatus

6.2.1 For tiles larger than 40 mm × 40 mm

6.2.1.1 Apparatus, as shown in figure 1, or any other suitable instrument.

In order to measure smooth-surfaced tiles, the supporting studs (S_A , S_B , S_C) shall be 5 mm in diameter. In order to obtain meaningful results for other tile surfaces, suitable supporting studs shall be used.