

Edition 2.0 2010-08

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE

Industrial communication networks - Fieldbus specifications - Part 4-18: Data-link layer protocol specification - Type 18 elements (Standards.iten.ar)

Réseaux de communications industriels – Spécifications de bus de terrain – Partie 4-18: Spécification de protocole de couche de liaison de données – Eléments de Type 18 cbae2b91994a/iec-61158-4-18-2010





## THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2010 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

Tel.: +41 22 919 02 11 IFC Central Office 3, rue de Varembé Fax: +41 22 919 03 00

CH-1211 Geneva 20 info@iec.ch Switzerland www.iec.ch

#### About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

## **About IEC publications**

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

#### **Useful links:**

IEC publications search - www.iec.ch/searchpub

The advanced search enables you to find IEQ publications by a variety of criteria (reference number, text, technical committee,...).

It also gives information on projects, replaced rand 152\_4\_1 withdrawn publications.

https://standards.iteh.ai/catalog/standards/s

IEC Just Published - webstore.iec.ch/justpublishedb91994a/icc-6115customer Service Centre - webstore.iec.ch/csc

Stay up to date on all new IEC publications. Just Published details all new publications released. Available on-line and also once a month by email.

The world's leading online dictionary of electronic and electrical terms containing more than 30 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary (IEV) on-line.

ectropedia.org

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

## A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

## A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

## Liens utiles:

Recherche de publications CEI - www.iec.ch/searchpub

La recherche avancée vous permet de trouver des publications CEI en utilisant différents critères (numéro de référence, texte, comité d'études,...).

Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

Just Published CEI - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications de la CEI. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

## Electropedia - www.electropedia.org

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 30 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (VEI) en ligne.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.



Edition 2.0 2010-08

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE

Industrial communication networks — Fieldbus specifications — Part 4-18: Data-link layer protocol specification — Type 18 elements

Réseaux de communications industriels 78 Spécifications de bus de terrain – Partie 4-18: Spécification de protocole de couche de liaison de données – Eléments de Type 18 cbae2b91994a/iec-61158-4-18-2010

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX V

ICS 25.04.40; 35.100.20; 35.110

ISBN 978-2-83220-261-6

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

## CONTENTS

| FU  | KEW                     | URD                                                                          | ວ  |  |
|-----|-------------------------|------------------------------------------------------------------------------|----|--|
| IN  | ΓROD                    | UCTION                                                                       | 7  |  |
| 1   | Sco                     | pe                                                                           | 8  |  |
|     | 1.1                     | General                                                                      | 8  |  |
|     | 1.2                     | Specifications                                                               | 8  |  |
|     | 1.3                     | Procedures                                                                   | 8  |  |
|     | 1.4                     | Applicability                                                                | 9  |  |
|     | 1.5                     | Conformance                                                                  | 9  |  |
| 2   | Norr                    | mative references                                                            | 9  |  |
| 3   | Tern                    | ns, definitions, symbols, abbreviations and conventions                      | 9  |  |
|     | 3.1                     | Reference model terms and definitions                                        | 9  |  |
|     | 3.2                     | Type 18: Symbols                                                             | 10 |  |
|     | 3.3                     | Type 18: Additional conventions                                              | 10 |  |
| 4   | DL-p                    | protocol overview                                                            | 10 |  |
|     | 4.1                     | Introduction                                                                 | 10 |  |
|     | 4.2                     | Polled DLE classes                                                           | 11 |  |
|     | 4.3                     | Packed DLE classes                                                           | 11 |  |
| 5   | DLP                     | DU encoding and transmission                                                 | 11 |  |
|     | 5.1                     | DU encoding and transmission DL – PhL interface                              | 11 |  |
|     | 5.2                     | DLPDU transmission endoding dards.iteh.ai)                                   | 12 |  |
| 6   | DLPDU – basic structure |                                                                              |    |  |
|     | 6.1                     | Overview IEC 61158-4-18:2010  Address field cbae2b91994a/iec-61158-4-18:2010 | 14 |  |
|     | 6.2                     | Address field                                                                | 14 |  |
|     | 6.3                     | Status field                                                                 | 15 |  |
|     | 6.4                     | Data field                                                                   | 17 |  |
| 7   | DLP                     | DU – Detailed structure, segmenting and reassembly                           | 19 |  |
| 8   | Data                    | a transmission methods                                                       | 23 |  |
|     | 8.1                     | Overview                                                                     | 23 |  |
|     | 8.2                     | Master-polled method                                                         | 23 |  |
|     | 8.3                     | Level A slave-polled method                                                  | 24 |  |
|     | 8.4                     | Level B slave-polled method                                                  | 25 |  |
|     | 8.5                     | Level C slave-polled method                                                  | 25 |  |
|     | 8.6                     | Master-packed method                                                         | 26 |  |
|     | 8.7                     | Slave-packed method                                                          | 27 |  |
| 9   | DL-r                    | management – procedures                                                      | 28 |  |
|     | 9.1                     | Overview                                                                     | 28 |  |
|     | 9.2                     | Establish master-polled DLE procedure                                        | 28 |  |
|     | 9.3                     | Establish slave-polled DLE procedure                                         | 29 |  |
|     | 9.4                     | Establish master-packed DLE procedure                                        | 31 |  |
|     | 9.5                     | Establish slave-packed DLE procedure                                         | 32 |  |
|     | 9.6                     | Release connection procedure                                                 | 33 |  |
|     | 9.7                     | Suspend connection procedure                                                 | 33 |  |
|     | 9.8                     | Resume connection procedure                                                  | 33 |  |
|     | 9.9                     | Activate standby Master procedure                                            | 34 |  |
| Bib | liogra                  | aphy                                                                         | 35 |  |

| Figure 1 – HDLC flag                                                                          | 12 |
|-----------------------------------------------------------------------------------------------|----|
| Table 1 – HDLC convention summary                                                             | 13 |
| Table 2 – HDLC exception summary                                                              | 14 |
| Table 3 – Master-polled DLE address octet 0                                                   | 14 |
| Table 4 – Slave-polled DLE address octet 0                                                    | 15 |
| Table 5 – Master-packed DLE address octet 0                                                   | 15 |
| Table 6 – Master-polled DLE status octet 0                                                    | 16 |
| Table 7 – Master-polled DLE status octet 1                                                    | 16 |
| Table 8 – Slave-polled DLE status octet 0                                                     | 17 |
| Table 9 – slave-polled DLE status octet 1                                                     | 17 |
| Table 10 – Slave-packed DLE status                                                            | 17 |
| Table 11 – DLPDU – Master-polled DLE acyclic data field                                       | 18 |
| Table 12 – DLPDU – Slave-polled DLE acyclic data field                                        | 19 |
| Table 13 – Example master-polled DLE RY contiguous data field                                 | 20 |
| Table 14 – Example slave-polled DLE RX contiguous data field                                  | 20 |
| Table 15 – Example master-polled DLE RWw contiguous data field                                | 20 |
| Table 16 – Example slave-polled DLE RWr contiguous data field                                 | 20 |
| Table 17 – Bit-oriented segment header DARD PREVIEW                                           | 21 |
| Table 18 – Polled DLE acyclic segment number field                                            | 22 |
| Table 19 – Slave-polled DLE acyclic data type and sequence field                              | 22 |
| Table 20 - DLPDU - Polled class poll with data 4.18:2010                                      | 23 |
| Table 21 – Slave-polled DLE response imeout  Table 22 – DLPDU – Poll  Table 22 – DLPDU – Poll | 23 |
| Table 22 – DLPDU – Poll                                                                       | 24 |
| Table 23 – DLPDU – End of cycle                                                               |    |
| Table 24 – slave-polled DLE request timeout                                                   | 24 |
| Table 25 – DLPDU – Level A poll response                                                      | 25 |
| Table 26 – DLPDU – Level B poll response                                                      | 25 |
| Table 27 – DLPDU – Level C poll response                                                      | 26 |
| Table 28 – DLPDU – Packed class poll with data                                                | 26 |
| Table 29 – Slave-packed DLE response timeout                                                  | 26 |
| Table 30 – Slave-packed DLE request timeout                                                   | 27 |
| Table 31 – DLPDU – Packed class poll response                                                 | 27 |
| Table 32 – Slave-packed DLE time constraints                                                  | 28 |
| Table 33 – DLPDU – Poll with test data                                                        | 28 |
| Table 34 – Slave-polled DLE response timeout                                                  | 29 |
| Table 35 – DLPDU – Poll test                                                                  | 29 |
| Table 36 – Slave-polled DLE request timeout                                                   | 29 |
| Table 37 – DLPDU – Poll test response                                                         | 30 |
| Table 38 – Slave-polled DLE configuration parameter                                           | 30 |
| Table 39 – DLPDU – Baud rate synchronization                                                  | 31 |
| Table 40 – DLPDU – Poll test                                                                  | 31 |
| Table 41 – Slave-packed DLF response timeout                                                  | 31 |

| Table 42 – Slave-packed DLE number of occupied DLE station slots | 32 |
|------------------------------------------------------------------|----|
| Table 43 – Slave-packed DLE baud rate synchronization timeout    | 32 |
| Table 44 – Slave-packed DLE Master timeout                       | 33 |
| Table 45 – DLPDU – Packed poll test response                     | 33 |

# iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61158-4-18:2010 https://standards.iteh.ai/catalog/standards/sist/6ecdd7e4-71c6-46d9-83ae-cbae2b91994a/iec-61158-4-18-2010

## INTERNATIONAL ELECTROTECHNICAL COMMISSION

## INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

# Part 4-18: Data-link layer protocol specification – Type 18 elements

## **FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

  chae2b91994a/iec-61158-4-18-2010
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

International Standard IEC 61158-4-18 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This bilingual version (2012-08) corresponds to the monolingual English version, published in 2010-08.

This second edition cancels and replaces the first edition published in 2007. This edition constitutes a technical revision.

The main changes with respect to the previous edition are listed below:

- Editorial improvements
- Addition of cyclic data segmenting

The text of this standard is based on the following documents:

| FDIS         | Report on voting |
|--------------|------------------|
| 65C/605/FDIS | 65C/619/RVD      |

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

The French version of this standard has not been voted upon.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

A list of all the parts of the IEC 61158 series, published under the general title *Industrial* communication networks – Fieldbus specifications, can be found on the IEC web site.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed;
- · withdrawn;
- · replaced by a revised edition, or
- amended. iTeh STANDARD PREVIEW

NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

<u>IEC 61158-4-18:2010</u> https://standards.iteh.ai/catalog/standards/sist/6ecdd7e4-71c6-46d9-83ae-cbae2b91994a/iec-61158-4-18-2010

## INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC 61158-1.

The data-link protocol provides the data-link service by making use of the services available from the physical layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer data-link entities (DLEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes:

- a) as a guide for implementors and designers;
- b) for use in the testing and procurement of equipment;
- c) as part of an agreement for the admittance of systems into the open systems environment;
- d) as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in the profile parts. Use of the various protocol types in other combinations may require permission from their respective intellectual property right holders.

The International Electrotechnical Commission (IEC) draws attention to the fact that it is claimed that compliance with this document may involve the use of patents concerning Type 18 elements and possibly other types given in 7.1.2 as follows:

| 3343036/Japan    | [MEC] | Network System for a Programmable Controller |
|------------------|-------|----------------------------------------------|
| 5896509/USA      | [MEC] | Network System for a Programmable Controller |
| 246906/Korea     | [MEC] | Network System for a Programmable Controller |
| 19650753/Germany | [MEC] | Network System for a Programmable Controller |

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holder of thess patent rights has assured the IEC that he/she is willing to negotiate licences either free of charge or under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of thess patent rights is registered with IEC. Information may be obtained from:

[MEC] Mitsubishi Electric Corporation Corporate Licensing DeivsionDivision 7-3, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100-8310, Japan

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://www.iec.ch/tctools/patent\_decl.htm) maintain online data bases of patents relevant to their standards. Users are encouraged to consult the data bases for the most up to date information concerning patents.

## INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

# Part 4-18: Data-link layer protocol specification – Type 18 elements

## 1 Scope

## 1.1 General

The data-link layer provides basic time-critical messaging communications between devices in an automation environment.

This protocol provides communication opportunities to all participating data-link entities

- a) in a synchronously-starting cyclic manner, according to a pre-established schedule, and
- b) in a cyclic or acyclic asynchronous manner, as requested each cycle by each of those data-link entities.

Thus this protocol can be characterized as one which provides cyclic and acyclic access asynchronously but with a synchronous restart of each cycle.

## 1.2 Specifications

(standards.iteh.ai)

This part of IEC 61158 specifies

IEC 61158-4-18:2010

- a) procedures for the timely transfer of data and control information from one data-link user entity to a peer user entity, and among the data-link entities forming the distributed data-link service provider;
- b) procedures for giving communications opportunities to all participating DL-entities, sequentially and in a cyclic manner for deterministic and synchronized transfer at cyclic intervals up to one millisecond;
- c) procedures for giving communication opportunities available for time-critical data transmission together with non-time-critical data transmission without prejudice to the time-critical data transmission;
- d) procedures for giving cyclic and acyclic communication opportunities for time-critical data transmission with prioritized access;
- e) procedures for giving communication opportunities based on standard ISO/ IEC 8802-3 medium access control, with provisions for nodes to be added or removed during normal operation;
- f) the structure of the fieldbus DLPDUs used for the transfer of data and control information by the protocol of this standard, and their representation as physical interface data units.

## 1.3 Procedures

The procedures are defined in terms of

- a) the interactions between peer DL-entities (DLEs) through the exchange of fieldbus DLPDUs;
- b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system through the exchange of DLS primitives;
- c) the interactions between a DLS-provider and a Ph-service provider in the same system through the exchange of Ph-service primitives.

## 1.4 Applicability

These procedures are applicable to instances of communication between systems which support time-critical communications services within the data-link layer of the OSI or fieldbus reference models, and which require the ability to interconnect in an open systems interconnection environment.

Profiles provide a simple multi-attribute means of summarizing an implementation's capabilities, and thus its applicability to various time-critical communications needs.

### 1.5 Conformance

This part of IEC 61158 does not specify individual implementations or products, nor do they constrain the implementations of data-link entities within industrial automation systems.

There is no conformance of equipment to this data-link layer service definition standard. Instead, conformance is achieved through implementation of the corresponding data-link protocol that fulfills the Type 18 data-link layer services defined in this standard.

## 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 7498-1, Information technology - Open Systems Interconnection - Basic Reference Model: The Basic Model

 $\begin{array}{c} \underline{\text{IEC } 61158\text{--}4\text{--}18\text{--}2010} \\ \text{ISO/IEC } 7498\text{--}3, \ \textit{Information technology}_{ogs} \underline{\textbf{Open Systems}}_{local } \underline{\textbf{Interconnection}}_{local } - \text{Basic Reference} \\ \textit{Model: Naming and addressing } \\ \underline{\textbf{cbae2b}}_{local } \underline{\textbf{1158--}4\text{--}18\text{--}2010} \\ \end{array}$ 

ISO/IEC 13239:2002, Information technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures

## 3 Terms, definitions, symbols, abbreviations and conventions

For the purposes of this document, the following terms, definitions, symbols, abbreviations and conventions apply.

## 3.1 Reference model terms and definitions

This standard is based in part on the concepts developed in ISO/IEC 7498-1 and ISO/IEC 7498-3, and makes use of the following additional terms:

## 3.1.1

## **DLE** station identifier

network address assigned to a DLE

## 3.1.2

## DLE station slot

unit (granularity of one) of position dependent mapping (for cyclic data field) of which a DLE may occupy one or more, delineated by the range beginning at the DLE station identifier with a length equal to the configured number of occupied slots

## 3.1.3

## **Master DLE**

DLE that performs the functions of network master

#### 3.1.4

## Master-packed DLE

master DLE that uses the packed response access protocol

## 3.1.5

## Master-polled DLE

master DLE that uses the polled response access protocol

## 3.1.6

## Packed response

transmission of data managed by the process of a master broadcasting a trigger message whereupon each slave waits a time period unique to its DLE station identifier then transmits its response resulting in a time-sliced packing of all slave responses triggered by a single master request

## 3.1.7

## Polled response

transmission of data managed by the process of a master individually interrogating each slave in a request/response paradigm

## 3.1.8

## Slave DLE

DLE that performs the functions of network slave

## 3.1.9 iTeh STANDARD PREVIEW

## Slave-packed DLE

slave DLE that uses the packed response access protocolai

## 3.1.10 <u>IEC 61158-4-18:2010</u>

Slave-polled DLE https://standards.iteh.ai/catalog/standards/sist/6ecdd7e4-71c6-46d9-83ae-

slave DLE that uses the polled response access protocol-2010

## 3.2 Type 18: Symbols

- RX DLS-user visible register containing bit-oriented cyclic data of type input data that is transmitted from a slave DLE to a master DLE
- RY DLS-user visible register containing bit-oriented cyclic data of type output data that is transmitted from a master DLE to a slave DLE
- RWr DLS-user visible register containing word-oriented cyclic data of type input data that is transmitted from a slave DLE to a master DLE
- RWw DLS-user visible register containing word-oriented cyclic data of type input data that is transmitted from a master DLE to a slave DLE

## 3.3 Type 18: Additional conventions

## 3.3.1 DLE support level

There are three levels of data transmission support for a DLE.

- Level A supports only bit-oriented cyclic data transmission
- Level B includes level A as well as word-oriented cyclic data transmission
- Level C includes level B as well as acyclic data transmission

## 4 DL-protocol overview

## 4.1 Introduction

There are four classes of Type 18 DLE:

a) Master-polled DLE

- b) Slave-polled DLE
- c) Master-packed DLE
- d) Slave-packed DLE.

Only the master DLE classes are able to initiate traffic. Slave DLEs only transmit in response to master DLE requests.

## 4.2 Polled DLE classes

A slave-polled DLE transmits a response immediately upon receipt of an explicitly coded poll request addressed to the slave-polled DLE from a master-polled DLE. The polled classes support both cyclic and acyclic data transport.

## 4.3 Packed DLE classes

A slave-packed DLE transmits a response after a unique time has elapsed following a receipt of an explicitly coded poll request broadcast from a master-packed DLE. This results in a time-sliced packing of all slave-packed DLE responses to a single master-packed DLE request. The packed classes support cyclic data transport only.

## 5 DLPDU encoding and transmission

## 5.1 DL - PhL interface

## iTeh STANDARD PREVIEW

## 5.1.1 Overview

The polled DLE classes employ the Type 18 Ph-MDS standard type. The packed DLE classes employ the Type 18 Ph-MDS high-density type.

In order to effect transmission, reception and management via the PhE, the DLE assumes a requisite set of support services as described in the following subclauses.

## 5.1.2 Transmission

A Type 18 DLE uses the following procedure to transmit data:

- 1) Segment DLPDUs into PhSDUs (single bits) using the HDLC protocol specified in 5.1
- 2) PH-DATA request (START-OF-ACTIVITY)
- 3) PH-DATA request (PhSDU)
- 4) PH-DATA confirm (SUCCESS)
- 5) repeat steps (3) and (4)
- 6) PH-DATA request (END-OF-ACTIVITY).

The DLE must sustain a rate of PhS requests that supports the configured baud rate as regulated by the PH-DATA success confirmation.

## 5.1.3 Reception

A Type 18 DLE uses the following procedure to receive data:

- 1) Ph-Data indication (START-OF-ACTIVITY)
- 2) Ph-Data indication (PhSDU)
- 3) If not Ph-Data indication (END-OF-ACTIVITY), repeat step (2), otherwise proceed to step (4)
- 4) Reassemble PhSDUs (single bits) into a DLPDU using the HDLC protocol specified in 5.1.

The DLE must sustain a rate of PhS indications that supports the configured baud rate.

## 5.1.4 Management

A Type 18 DLE assumes that the PhE supports the following services:

- PH-RESET
- PH-SET-VALUE (baud-rate)

## 5.2 DLPDU transmission encoding

### 5.2.1 General

The Type 18 DL implements a subset of the High-level Data Link Control (HDLC) protocol corresponding to ISO/IEC 13239:2002, named HDLC throughout the remainder of this clause, with some exceptions as noted.

## 5.2.2 Polled DLE

## 5.2.2.1 Preamble

A preamble of three consecutive HDLC flags is transmitted as defined by ISO/IEC 13239:2002 and shown in Figure 1.



## 5.2.2.2 End of activity

An end-of-frame (EOF) of three consecutive HDLC flags is transmitted as defined by ISO/IEC 13239:2002 and shown in Figure 1: chae2h91994a/iec-61158-4-18-2010

## 5.2.3 Packed DLE

## 5.2.3.1 Start of activity

A preamble of one HDLC flag is transmitted as defined by ISO/IEC 13239:2002 and shown in Figure 1.

## 5.2.3.2 End of activity

An end-of-frame (EOF) of one HDLC flag is transmitted as defined by ISO/IEC 13239:2002 and shown in Figure 1.

## 5.2.4 HDLC conventions

## 5.2.4.1 Data encoding

Data is encoded using NRZI encoding as defined by ISO/IEC 9314-1.

## 5.2.4.2 Frame format

The non-basic frame format is specified with a non-standard address field, as specified in 5.2.5.1, and a non-standard control field, as specified in 5.2.5.2.

## 5.2.4.3 Frame checking sequence field

The 16-bit frame checking sequence (Cyclic Redundancy Check, CRC) option shall be implemented for all DLEs of the polled class. The 8-bit frame checking sequence (CRC) option shall be implemented for all DLEs of the packed class.

## 5.2.4.4 Header check sequence field

The header check sequence field shall not be implemented.

## 5.2.4.5 Operational mode

The Normal Response Mode (NRM) shall be implemented.

## 5.2.4.6 Start/stop transmission – basic transparency

The protocol for basic transparency shall not be implemented.

## 5.2.4.7 **Summary**

The HDLC conventions implemented by the DL are summarized in Table 1.

Table 1 - HDLC convention summary

| Component                                         | Implementation       |
|---------------------------------------------------|----------------------|
| Data encoding                                     | NRZI                 |
| Frame format                                      | non-basic frame      |
| Frame checking sequence field                     | 16-bit / 8-bit       |
| Header check sequence field                       | not implemented      |
| Operational mode                                  | normal response mode |
| Start/stop transmission – basic transparency rds. | notimplemented       |

## 5.2.5 HDLC exceptions

<u>IEC 61158-4-18:2010</u>

https://standards.iteh.ai/catalog/standards/sist/6ecdd7e4-71c6-46d9-83ae-

## 5.2.5.1 Address field

cbae2b91994a/iec-61158-4-18-2010

The DLE implements a two-octet address field the encoding of which does not conform to HDLC. A special subset of the response type messages are defined that exclude the address field entirely (field length = 0).

## 5.2.5.2 Control field

The DLE implements a two-octet control field the encoding of which does not conform to HDLC. Throughout the remainder of this clause, the control field is named the status field.

A special subset of the request type transmissions are defined that exclude the status field entirely. Another special subset of the response type transmissions are defined with an abbreviated 4-bit status field.

## 5.2.5.3 Inter-frame time fill

The polled DLE class implements an inter-frame time fill the encoding of which does not conform to HDLC. The polled DLE class inter-frame time fill shall be accomplished by transmitting a continuous stream of alternating zeros and ones.

## 5.2.5.4 **Summary**

The HDLC exceptions implemented by the DLE are summarized in Table 2.