INTERNATIONAL STANDARD

ISO 10645

> First edition 1992-03-01

Nuclear energy — Light water reactors — Calculation of the decay heat power in nuclear fuels

iTeh STANDARD PREVIEW

Énergie nucléaire – Réacteurs à eau légère – Calcul de la puissance résiduelle des combustibles nucléaires

ISO 10645:1992 https://standards.iteh.ai/catalog/standards/sist/cb737c49-c0f5-45df-a24ccc38076926ac/iso-10645-1992

Reference number ISO 10645:1992(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

(standards.iteh.ai) International Standard ISO 10645 was prepared by Technical Committee ISO/TC 85, Nuclear energy, Sub-Committee SC 3, Power reactor technology. https://standards.iteh.ai/catalog/standards/sist/cb737c49-c0f5-45df-a24c-

Annex A forms an integral part of this International Standard 10645-1992

© ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland

Introduction

The decay heat power of nuclear fuels is the thermal power produced by radioactive decay of fission and activation products of the nuclear fuel following the shutdown of a nuclear reactor. It is an important physical quantity for the design of systems in which the decay heat power has to be taken into consideration as a heat source.

This International Standard gives the local generation of decay heat power as a function of the thermal fuel power during operation. The spatial distribution of the energy conversion into heat, e.g. γ -radiation, is not considered. If required, evaluation of this is left to the user.

The calculation procedure used has the advantage of enabling decay heat power to be calculated with an accuracy comparable to that of summation codes but without the need for complicated calculations.

For calculating the decay heat power or its individual components, the user can employ methods and data bases of his own, provided that their validity is established. For the fission product contribution, this requires comparison with this International Standard.

https://standards.iteThecnower.generated.by_delayed_neutrons and activated structural material is not considered in this International Standard.

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 10645:1992

https://standards.iteh.ai/catalog/standards/sist/cb737c49-c0f5-45df-a24ccc38076926ac/iso-10645-1992

Nuclear energy — Light water reactors — Calculation of the decay heat power in nuclear fuels

1 Scope

2 Definitions

For the purposes of this International Standard, the following definitions apply.

This International Standard provides the basis for calculating the decay heat power of non-recycled nuclear fuel of light water reactors. For this purpose the following components are considered:

- the contribution of the fission products from nu-RD 2.2 operating time: The entire period from the first clear fission;
 (standards itcharging of the reactor with fuel until the final shut-
- the contribution of the actinides;
- the contribution of isotopes resulting from neutron capture in fission products.
 <u>ISO 10645:1992.3</u> decay time: The time elapsing after the operattron capture in fission products.
 <u>C38076926ac/iso-10645-1992</u>

This International Standard applies to light water reactors (pressurized water and boiling water reactors) loaded with a nuclear fuel mixture consisting of 235 U and 238 U. Its application to recycled nuclear fuel is not permissible.

The calculation procedures apply to decay heat periods of 0 and 10^9 s.

2.1 decay heat power of nuclear fuels: The thermal power produced by radioactive decay of fission and activation products of the nuclear fuel, following shutdown of a nuclear fission reactor.

standards.itcharging of the reactor with fuel until the final shutdown considered.

2.4 power histogram: This approximates the true variation of power with time, subdivided into intervals of constant power output and fuel composition.

3 Symbols and subscripts

3.1 Symbols

Symbol	Quantity	Unit
A(t)	Factor to be applied to the decay heat power of the fission products P_s for calculating the contribution P_A of the actinides (excluding ²³⁹ U and ²³⁹ Np)	
$f_i(t)$	Decay heat power of the fission products at time t after a single nuclear fission of the fissile nuclide i	MeV/s by fission
$\Delta f_i(t)$	Standard deviation of $f_i(t)$	MeV/s by fission
$F_l(t_k, T_k)$	Decay heat power of the fission products of the fissile nuclide i at time t_k after the irradiation time interval T_k referred to one fission per second	MeV/s by fission/s
$\Delta F_i(t_k,T_k)$	Standard deviation of $F_i(t_k, T_k)$	MeV/s
H(t)	Factor to be applied to the decay heat power of the fission products P_s for calculating the contribution P_E from neutron capture in fission products (excluding capture in ¹³³ Cs)	by its ion/s —

Symbol	ool Quantity				
$\overline{P_k}$	Total thermal power of the fuel during the k^{th} time interval T_k	1)			
P _{ik}	Contribution of the fissile nuclide <i>i</i> to the thermal power of the fuel during the k^{th} time interval T_k	2)			
$P_{N}(t,T)$	Total decay heat power at time t after the end of operating time T	2)			
$P_{s}(t,T)$	Summed decay heat power on the basis of fission product decays	2}			
$\Delta P_{\rm S}(t,T)$	Standard deviation of $P_{S}(t,T)$	2)			
$P_{s_i}(t,T)$	Contribution of the fissile nuclide <i>i</i> to the decay heat power $P_{s}(t,T)$	2)			
$\Delta P_{Si}(t,T)$	Standard deviation of $P_{si}(t,T)$	2)			
$P_{E}(t,T)$	Contribution to the decay heat power through neutron capture in fission products (excluding capture in ¹³³ Cs)	2)			
$P_{\rm B}(t,T)$	Contribution of actinides ²³⁹ U and ²³⁹ Np to the decay heat power	2)			
$P_{A}(t,T)$	Contribution of actinides (excluding ²³⁹ U and ²³⁹ Np) to the decay heat power	2)			
$P_{Cs}(t,T)$	Contribution of ¹³⁴ Cs to the decay heat power	2)			
Q _i	Total thermal energy released from one nuclear fission of the fissile nuclide <i>i</i>	MeV by fission			
ΔQ_i	Standard deviation of the thermal energy released from one nuclear fission of the fissile nuclide <i>i</i>	MeV by fission			
t	Decay time (see 2.3 and figure 1)	s			
(_k	Time from the end of the k^{th} time interval T_k in the power histogram (see figure 1)	S			
Т	Operating time (see 2.2 and figure 1) NDARD PREVIEW	s			
T _k	Duration of the k^{th} time interval in the power histogram (see figure 1)	S			
T _{eff}	Operating time minus shutdown intervals ards.iteh.ai)	S			
x _{ij}	Coefficient used for representing the decay heat power of the fission products as the summation of 24 exponential functions of 10645-1002	MeV/s by fission			
β _{ij}	Coefficient representing the standard deviation ³) of the decay heat power of the fission products as the summation of 24 exponential functions	MeV/s by fission			
	Exponent used for representing the decay heat power of the fission products and	s ⁻¹			

3.2 Subscripts

- *i* Subscript denoting the fissile nuclides ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- j Summation subscript used for representing the decay heat power by a summation of exponential functions
- k Subscript used for enumerating the individual time intervals in the power histogram
- m Number of time intervals T_k in the power histogram

4 Calculation of decay heat power

4.1 General

To calculate the decay heat power, the following components shall be considered:

- the contribution of the fission products from nuclear fission of the four nuclides ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu (other fissile nuclides shall be treated as ²³⁵U);
- the contribution of the actinides;
- the contribution of nuclides resulting from neutron capture in fission products.

The calculation procedures shall apply to decay times *t* between 0 and 10^9 s.

Decay heat power from delayed neutron-induced fission and activation in structural materials are not included in this International Standard and shall be evaluated by the user and appropriately included in any analyses of decay heat power.

4.2 Power histogram **iTeh STANDARD**

Generally, the composition and power output of the fuel under consideration are subject to change during the operating time. This can be taken into ac45:1992

count subdi stant power and constant fissile nuclides (approximated composition, see figures 1 and A.1). It has to be ensured that the systematic error introduced by this approximation remains small compared with the statistical error of the calculated decay heat power. This can be achieved by making the best possible approximation of the fuel power at the end of the operating time. The error introduced by the approximation of the power in the power histogram decreases rapidly with increasing decay time, the accuracy of approximation in the individual intervals can decrease with increasing distance t_k of interval k from the decay instant considered. Since a variation in the relative power contributions of the fissile nuclide is less important for the decay heat power than a variation in the operating power, a rougher scaling is often sufficient for this purpose.

It is important to ensure that, in each time interval of the histogram, the time integral of the total power and the power from each fissile nuclide agrees with the corresponding value of the actual power histogram.

4.3 Contribution of fission products

The contribution $P_{S}(t,T)$ of the fission products to the decay heat power is calculated from the individual

contributions $P_{Si}(t,T)$ of the four fissile isotopes using the formula

$$P_{\rm S}(t,T) = \sum_{i=1}^{4} P_{\rm Si}(t,T)$$
 ... (1)

Each contribution $P_{Si}(t,T)$ is in turn composed of the summed decay heat powers of the *m* time intervals of the power histogram and is calculated as follows

$$P_{Si}(t,T) = \sum_{k=1}^{m} P_{Si}(t_k,T_k) = \sum_{k=1}^{m} \frac{P_{ik}}{Q_i} F_i(t_k,T_k)$$
....(2)

where

- P_{ik} is the thermal power released by fission;
- Q_i is the total thermal energy released by a single fission (see table 1);
- P_{ik}/Q_i gives the fission rate of the fissile nuclide *i*.

 $F_i(t_k, T_k)$ is the decay heat power of the fissile nuclide *i*, referred/to one nuclear fission per second, for a time interval of duration T_k and for a decay time t_k . It is calculated from the energy release $f_i(t)$ of the

fission products of a single fission at time t after fission as follows:

for calculating the //decaydsheati/powerstabyrds/sist/cb737649-695-4
$$\int_{0}^{T_{k}} dt^{T_{k}} dt^{T_{k}} dt^{T_{k}} = \int_{0}^{T_{k}} dt^{T_{k}} dt^{T_{k}}$$

 $f_i(t)$ is calculated as follows by using the coefficients α_{ij} , λ_{ij} given in table 2.

$$f_i(t) = \sum_{j=1}^{24} \alpha_{ij} \mathrm{e}^{-\lambda_{ij}t} \qquad \dots (4)$$

The following equation is thus obtained.

$$F_i(t_k,T_k) = \sum_{j=1}^{24} \frac{\alpha_{ij}}{\lambda_{ij}} \left(1 - e^{-\lambda_{ij}T_k}\right) e^{-\lambda_{ij}t_k} \qquad \dots (5)$$

Hence, the contribution $P_{s}(t,T)$ of the fission products to the decay heat power is calculated using the formula

$$P_{\rm S}(t,T) = \sum_{i=1}^{4} \sum_{k=1}^{m} \left\{ \frac{P_{ik}}{Q_i} \right\}$$
$$\sum_{j=1}^{24} \left[\frac{\alpha_{ij}}{\lambda_{ij}} \left(1 - e^{-\lambda_{ij}T_k} \right) e^{-\lambda_{ij}t_k} \right]$$
$$\dots (6)$$

Figure 1 illustrates a power histogram with four time intervals of varying power for the fissile nuclide *i*.

. .

Figure 1 — Power histogram

A representation analogous to formula (4) is adopted to calculate $\Delta f_i(t)$ using the following formula. (The values of coefficients λ_{ij} and β_{ij} are given in table 2.)

$$\Delta f_i(t) = \sum_{j=1}^{24} \beta_{ij} \mathrm{e}^{-\lambda_{ij}t} \qquad \dots (10)$$

hence

$$\Delta F_i(t_k,T_k) = \sum_{j=1}^{24} \frac{\beta_{ij}}{\lambda_{ij}} \left(1 - e^{-\lambda_{ij}T_k}\right) e^{-\lambda_{ij}t_k} \qquad \dots (11)$$

For decay times $t_k < 1$ s, the standard deviation $\Delta F_i(t_k, T_k)$ is calculated using the formula

$$\Delta F_i(t_k, T_k) = \frac{F_i(t_k, T_k)}{F_i(t_k = 1 \text{ s}, T_k)} \Delta F_i(t_k = 1 \text{ s}, T_k)$$
....(12)

The standard deviation $\Delta P_{\rm S}$ of the decay heat power of all fission products is calculated using the formula

... (13)

 $|\Delta P_{\rm S}| = \sum^{\cdot} |\Delta P_{\rm Si}|$ Thus, for the decay heat power contributions DARD PREV $P_{si}(t,T)$, the individual times t_k are calculated using DARD PREV the formula

$$t_{m-1} = t + T_{m}$$

$$t_{m-1} = t + T_{m}$$

$$t_{m-1} = t + T_{m}$$

$$t_{m-1} = t + \sum_{k=2}^{m} T_{k}$$

$$t_{1} = t + \sum_{k=2}^{m} T_{k}$$

The relative standard deviation of the decay heat power $\Delta P_{si}/P_{si}$ of the fission products is calculated from the standard deviation $\Delta F_i(t_k, T_k)$ and the relative standard deviation $\Delta Q_i | Q_i$.

The contribution of the fissile nuclide *i* is calculated using the formula

$$\left(\frac{\Delta P_{Si}}{P_{Si}}\right)^{2} = \left(\frac{\Delta Q_{i}}{Q_{i}}\right)^{2} + \left[\frac{\sum_{k=1}^{m} \frac{P_{ik}}{Q_{i}} \Delta F_{i}(t_{k}, T_{k})}{P_{Si}}\right]^{2} \dots (8)$$

The values of Q_i and ΔQ_i are given in table 1.

For decay time $t_k \ge 1$, the standard deviation $\Delta F_i(t_k, T_k)$ is calculated using the formula

$$\Delta F_i(t_k, T_k) = \int_0^{T_k} \Delta f_i(T_k - T' + t_k) \mathrm{d}T' \qquad \dots (9)$$

(standard4.icontribution of actinides

lp is

$$P_{\rm B}(t,T) = \sum_{k=1}^{m} \frac{P_k}{Q} \left[F_{\rm U}(t_k,T_k) + F_{\rm Np}(t_k,T_k) \right]$$
....(14)

 P_k/Q is the total fission rate in time interval k and is substituted in formula (14) as follows:

$$\frac{P_k}{Q} = \sum_{i=1}^{4} \frac{P_{ik}}{Q_i} \qquad \dots (15)$$

For the summation in formula (14), only the last 20 days of the power histogram need to be considered. The terms $F_{U}(t_k, T_k)$ and $F_{Np}(t_k, T_k)$ in formula (14) are calculated using formulae (16) and (17) respectively.

$$F_{\mathsf{U}}(t_k,T_k) = E_{\mathsf{U}}R(1-\mathrm{e}^{-\lambda_{\mathsf{U}}T_k})\mathrm{e}^{-\lambda_{\mathsf{U}}t_k} \qquad \dots (16)$$

$$F_{Np}(t_k, T_k) =$$

$$= E_{Np} R \left[\frac{\lambda_U}{\lambda_U - \lambda_{Np}} \left(1 - e^{-\lambda_{Np} T_k} \right) e^{-\lambda_{Np} t_k} - \frac{\lambda_{Np}}{\lambda_U - \lambda_{Np}} \left(1 - e^{-\lambda_U T_k} \right) e^{-\lambda_U t_k} \right] \qquad \dots (17)$$

where

- $E_{\rm U}$ (= 0.474 MeV) is the mean decay energy of ²³⁹U;
- $E_{\rm Np}$ (=0,419 MeV) is the mean decay energy of ²³⁹Np;
- $\lambda_{\rm U}$ (= 4.91 × 10⁻⁴ s⁻¹) is the decay constant of ²³⁹U;
- λ_{Np} (= 3.41 × 10⁻⁶ s⁻¹) is the decay constant of ²³⁹Np;
- R is the ratio of the neutron capture rate in ²³⁸U to the total fission rate at the end of the operating time.

If the user does not have any values for R, the following approximation may be used:

$$R = 1,18e^{-0,141a_0} - 0,2 + 6,2 \times 10^{-3}BU \qquad \dots (18)$$

where

 a_0 is the initial enrichment of ²³⁵U (percentage by mass);

BU is the burn-up of the fuel, in megawatts day

4.5 Contribution by neutron capture in fission products

4.5.1 Contribution of ¹³⁴Cs

The ¹³⁴Cs produced by the reaction ¹³³Cs + n may have a significant contribution to the decay heat power, particularly for decay times in the region of 10^8 s, and is therefore treated explicitly.

The following formula applies

$$P_{\rm Cs}(t,T) = \frac{P}{Q} F_{\rm Cs}(t,T) \qquad \dots (20)$$

where

$$\frac{P}{Q} = \sum_{i=1}^{4} \frac{P_i}{Q_i} \qquad \dots (21)$$

and

$$F_{Cs}(t,T) = \lambda_4 E_{Cs} \psi \left[\frac{1 - e^{-(\lambda_4 + \sigma_4 \Phi)T}}{\lambda_4 + \sigma_4 \Phi} + \frac{e^{-\sigma_3 \Phi T} - e^{-(\lambda_4 + \sigma_4 \Phi)T}}{\sigma_3 \Phi - (\lambda_4 + \sigma_4 \Phi)} \right] e^{-\lambda_4 t} \qquad \dots (22)$$

Formula (18) was developed for a typical light water s.iteh.ai) of reactor (LWR) spectrum and applies to initial where enrichments between 1,9 % and 4,1 %. It jyields 45:1992

conservatively high results://standards.itch.ai/catalog/standards/sist/cb739/c49-d(#0,068.3)4is the mean ¹³³Cs yield per fiscc38076926ac/iso-10645-1992 sion;

4.4.2 Contribution of other actinides

The contribution $P_A(t,T)$ of the other actinides resulting from the neutron capture (excluding ²³⁹U and ²³⁹Np) is to be stated by the user.

The formula

$$P_{\mathsf{A}}(t,T) = A(t)P_{\mathsf{S}}(t,T) \qquad \dots (19)$$

yields conservatively high results, when using the factors A(t) from table 3, provided the following boundary conditions are fulfilled:

- initial enrichment, expressed as percentage by mass, 1,9 % $\leq a_0 \leq$ 4,1 %;
- burn-up, in megawatts day per kilogram of uranium, BU ≤ 12,5a₀;
- power density, in kilowatts per kilogram of uranium, $S \ge 5a_0$.

- $E_{\rm Cs}$ (= 1,717 MeV) is the mean decay energy of ¹³⁴Cs;
- λ_4 (= 1.071 × 10⁻⁸ s⁻¹) is the decay constant of ¹³⁴Cs;
- Φ is the total neutron flux in cm⁻²·s⁻¹;
- σ_3 (= 10,7 × 10⁻²⁴ cm²) is the spectrumaveraged (*n*, *y*) cross-section of ¹³³Cs.
- σ_4 (= 16,8 × 10⁻²⁴ cm²) is the spectrumaveraged (*n*, *y*) cross-section of ¹³⁴Cs.

 σ_3 and σ_4 were determined for a typical pressurized water reactor (PWR) spectrum. When applied to a boiling water reactor (BWR) they yield conservatively high results.

For a power histogram, an effective irradiation time $T_{\rm eff}$, an effective neutron flux $\Phi_{\rm eff}$ and a mean fission rate P/Q are to be used in formulae (20) and (22).

These are to be determined as follows:

$$T_{\text{eff}} = \sum_{k=1}^{m} T_k \text{ (for all } k \text{ with } \boldsymbol{\Phi}_k \neq 0 \text{)}$$

... (23)

$$\boldsymbol{\Phi}_{\text{eff}} = \frac{1}{T_{\text{eff}}} \sum_{k=1}^{m} \boldsymbol{\Phi}_{k} T_{k} \qquad \dots (24)$$

$$\frac{P}{Q} = \frac{1}{T_{\text{eff}}} \sum_{k=1}^{m} \sum_{i=1}^{4} \frac{P_{ik}}{Q_i} T_k \qquad \dots (25)$$

If no value for neutron flux is available, the following approximation can be used:

$$\Phi_{k} = \frac{S_{k}}{a_{\text{eff}}} \times 2.58 \times 10^{13} \left(\text{cm}^{-2} \cdot \text{s}^{-1} \right) \qquad \dots (26)$$

where

- is the power density, in kilowatts per kilo- S_k gram of uranium, in the fuel;
- is the effective enrichment of fissile ma a_{eff} terial which is calculated from the initial enrichment a_0 , expressed as a percentage by mass.

$$a_{\rm eff} = \frac{a_0}{2} + 1,0$$
 ... (27)

For enrichments and burn-ups typical of LWRs, Φ_{II} solution overestimates $P_{Cs}(t,T)$ by up to 15 %.

yields conservatively high results, when using the factors H(t) from table 4, provided that the following boundary conditions are fulfilled:

- initial enrichment, expressed as a percentage by mass, 1,9 % $\leq a_0 \leq 4,1$ %;
- burn-up, in megawatts day per kilogram of uranium, BU \leq 12,5 a_0 ;
- power density, in kilowatts per kilogram of uranium, $S \ge 5a_0$.

4.6 Total decay heat power

The total decay heat power is calculated using the formula

$$P_{N}(t,T) = P_{S}(t,T) + P_{B}(t,T) + P_{A}(t,T) + P_{C_{S}}(t,T) + P_{E}(t,T) + \dots$$
(29)

The associated error bandwidth ΔP_N shall be determined from standard deviation $\Delta P_{
m S}$ [see formula(13)] and the uncertainty of the thermal power during operation $(\Delta P/P)$ using the formula

 $\Delta P_{\mathsf{N}}(t,T) = n \sqrt{\left[\Delta P_{\mathsf{S}}(t,T)\right]^{2} + \left[P_{\mathsf{N}}(t,T) \times \frac{\Delta P}{P}\right]^{2}}$ in formula (26) yields values of $P_{cs}(t,T)$ which exceed DA the exact values by up to 5 %. For shorter irradiation times (< 25 MWd/kg) the approximate ards.iteh.ai) ...(30)

> ISO 10 where n is the multiple of the standard deviation https://standards.iteh.ai/catalog/standards/scilete/3 with the chosen confidence level.

4.5.2 Contribution of remaining capture reactions

The contribution $P_{\rm F}(t,T)$ made to the decay heat power by neutron capture in fission products (except in ¹³³Cs) is to be stated by the user.

The formula

$$P_{\mathsf{E}}(t,T) = H(t)P_{\mathsf{S}}(t,T) \qquad \dots (28)$$

 $R^{8076926ac/The 0}$ other contributions to the decay heat power $P_{\rm B}$, P_{A} , P_{Cs} and P_{F} shall be determined conservatively and do not enter into the calculation of the uncertainty bandwidth. Using the approximate methods of this International Standard for these contributions results in reasonably conservative overestimates. If the user does not have values permitting conservative underestimates of the total decay heat power, then $P_{N}(t,T) = P_{S}(t,T)$ may be used.

Table 1 — Total effective thermal energy Q_i released as a result of one nuclear fission of fissile nuclide i, and the corresponding standard deviation ΔQ_i

Values in MeV/fission

i	Fissile nuclide	$Q_{{\sf eff},i}$ 1)	$Q_{c,i}^{2}$	$Q_i = Q_{{\sf eff},i} + Q_{{\sf c},i}$	ΔQ_i
1	²³⁵ U	193,5	8,7	202,2	± 0,5
2	²³⁸ U	194,6	10,9	205,5	± 1,0
3	²³⁹ Pu	199,7	11,5	211,2	± 0,7
4	²⁴¹ Pu	201,8	11,9	213,7	± 0,7

1) $Q_{\text{eff},i}$ is the effective thermal energy resulting from one nuclear fission.

2) Q_{c,i} is the effective thermal energy released from neutron captures not resulting in nuclear fission, based on a mean energy per capture of 6,1 MeV, which is characteristic of LWRs. The mean energy per capture applicable to each distinct case may be inserted by the user as appropriate.

Coefficients for the thermal fission of ²³⁵ U [see formulae (4), (5), (10) and (11)]					Coefficients for the thermal fission of ²³⁹ Pu [see formulae (4), (5), (10) and (11)]				
j	$\alpha\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	$\beta\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	λ (s ⁻¹)		j	$\alpha\left(\frac{MeV/s}{fission}\right)$	$\beta\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	λ (s ⁻¹)	
1 2 3 4 5 6	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$\begin{array}{c} 2,964 \ 0 \\ 2,573 \ 9 \times 10^{-1} \\ 3,894 \ 8 \times 10^{-2} \\ 9,689 \ 7 \times 10^{-3} \\ 4,653 \ 6 \times 10^{-3} \\ 1,135 \ 3 \times 10^{-3} \end{array}$	$\begin{array}{c} 2,499\ 0\\ 2,213\ 8\times10\\ 5,158\ 7\times10^{-1}\\ 1,959\ 4\times10^{-1}\\ 1,031\ 4\times10^{-1}\\ 3,365\ 6\times10^{-2} \end{array}$		1 2 3 4 5 6	$\begin{matrix} 0 \\ 2,083 & 0 \times 10^{-1} \\ 3,853 & 0 \times 10^{-1} \\ 2,213 & 0 \times 10^{-1} \\ 9,460 & 0 \times 10^{-2} \\ 3,531 & 0 \times 10^{-2} \end{matrix}$	$\begin{array}{c} 2,319 \ 5\\ 1,126 \ 1\times 10^{-1}\\ 2,106 \ 3\times 10^{-2}\\ 1,134 \ 1\times 10^{-2}\\ 5,801 \ 0\times 10^{-3}\\ 1,353 \ 8\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 2,183 \ 6\\ 1,002 \ 0 \times 10\\ 6,433 \ 0 \times 10^{-1}\\ 2,186 \ 0 \times 10^{-1}\\ 1,004 \ 0 \times 10^{-1}\\ 3,728 \ 0 \times 10^{-2} \end{array}$	
7 8 9 10 11 12	$\begin{array}{c} 2.222 \ 5\times10^{-2} \\ 3.308 \ 8\times10^{-3} \\ 9.301 \ 5\times10^{-4} \\ 8.094 \ 3\times10^{-4} \\ 1.956 \ 7\times10^{-4} \\ 3.253 \ 5\times10^{-5} \end{array}$	$\begin{array}{c} 3.989 \ 3 \times 10^{-4} \\ 6.805 \ 6 \times 10^{-5} \\ 1.706 \ 5 \times 10^{-5} \\ 1.413 \ 9 \times 10^{-5} \\ 4.032 \ 2 \times 10^{-6} \\ 5.046 \ 8 \times 10^{-7} \end{array}$	$1,168 1 \times 10^{-2} 3,587 0 \times 10^{-3} 1,393 0 \times 10^{-3} 6,263 0 \times 10^{-4} 1,890 6 \times 10^{-4} 5,498 8 \times 10^{-5} $		7 8 9 10 11 12	$2,292 \ 0 \times 10^{-2} \\3,946 \ 0 \times 10^{-3} \\1,317 \ 0 \times 10^{-3} \\7,052 \ 0 \times 10^{-4} \\1,432 \ 0 \times 10^{-5} \\1,765 \ 0 \times 10^{-5}$	$\begin{array}{c} 8,760 \ 8 \times 10^{-4} \\ 1,636 \ 0 \times 10^{-4} \\ 5,373 \ 8 \times 10^{-5} \\ 2,260 \ 5 \times 10^{-5} \\ 7,045 \ 4 \times 10^{-6} \\ 8,481 \ 9 \times 10^{-7} \end{array}$	$1,435 0 \times 10^{-2} 4,549 0 \times 10^{-3} 1,328 0 \times 10^{-3} 5,356 0 \times 10^{-4} 1,730 0 \times 10^{-4} 4,881 0 \times 10^{-5} $	
13 14 15 16 17 18	$7,559 5 \times 10^{-6} 2,523 2 \times 10^{-6} 4,994 8 \times 10^{-7} 1,853 1 \times 10^{-7} 2,660 8 \times 10^{-8} 2,239 8 \times 10^{-9} $	$\begin{array}{c} 3,701 \ 7\times10^{-8} \\ 5,436 \ 2\times10^{-8} \\ 1,074 \ 1\times10^{-8} \\ 3,604 \ 2\times10^{-9} \\ 5,332 \ 7\times10^{-10} \\ 4,483 \ 6\times10^{-11} \end{array}$	$2,095 8 \times 10^{-5} 1,001 0 \times 10^{-5} 2,543 8 \times 10^{-6} 6,636 1 \times 10^{-7} 1,229 0 \times 10^{-7} 2,721 3 \times 10^{-8} $		13 14 15 16 17 18	$7,347 \ 0 \times 10^{-6} \\ 1,747 \ 0 \times 10^{-6} \\ 5,481 \ 0 \times 10^{-7} \\ 1,671 \ 0 \times 10^{-7} \\ 2,112 \ 0 \times 10^{-8} \\ 2,996 \ 0 \times 10^{-9} $	$2,972 \ 1 \times 10^{-7} \\ 9,950 \ 9 \times 10^{-8} \\ 2,708 \ 6 \times 10^{-8} \\ 8,352 \ 7 \times 10^{-9} \\ 1,056 \ 9 \times 10^{-9} \\ 1,497 \ 8 \times 10^{-10}$	$2,006 \ 0 \times 10^{-5} \\ 8,319 \ 0 \times 10^{-6} \\ 2,358 \ 0 \times 10^{-6} \\ 6,450 \ 0 \times 10^{-7} \\ 1,278 \ 0 \times 10^{-7} \\ 2,466 \ 0 \times 10^{-8} \\ \end{bmatrix}$	
19 20 21 22 23 24	$\begin{array}{c} 8,164 \ 1\times 10^{-12} \\ 8,779 \ 7\times 10^{-11} \\ 2,513 \ 1\times 10^{-14} \\ 3,217 \ 6\times 10^{-16} \\ 4,503 \ 8\times 10^{-17} \\ 7,479 \ 1\times 10^{-17} \end{array}$	$1,631 4 \times 10^{-13}$ $1,760 8 \times 10^{-12}$ $4,985 6 \times 10^{-16}$ $6,403 3 \times 10^{-19}$ $9,112 2 \times 10^{-19}$ $1,498 2 \times 10^{-18}$	$\begin{array}{c} 4,371 \ 4 \times 10^{-9} \\ 7.578 \ 0 \times 10^{-10} \\ 2,478 \ 6 \times 10^{-13} \\ 2,238 \ 4 \times 10^{-13} \\ 2,460 \ 0 \times 10^{-14} \\ 1,569 \ 9 \times 10^{-14} \end{array}$	K] 5.	19 20 21 22 23 24	5,107 0 × 10 ⁻¹¹ 5,730 0 × 10 ⁻¹¹ 4,138 0 × 10 14 1,088 0 × 10 14 2,454 0 × 10 -17 7,557 0 × 10 ⁻¹⁷	$2,552 \ 1 \times 10^{-12} \\ 2,860 \ 8 \times 10^{-12} \\ 2,072 \ 2 \times 10^{-15} \\ 5,420 \ 6 \times 10^{-17} \\ 1,226 \ 8 \times 10^{-18} \\ 3,929 \ 1 \times 10^{-18} \\ \end{cases}$	$9,378 \ 0 \times 10^{-9} 7,450 \ 0 \times 10^{-10} 2,426 \ 0 \times 10^{-10} 2,210 \ 0 \times 10^{-13} 2,640 \ 0 \times 10^{-14} 1,380 \ 0 \times 10^{-14}$	
	238							241	

Table 2 — Coefficients for the thermal fission of 235 U, 239 Pu, 241 Pu and for the fast fission of 238 U

Coefficients for the fast fission of ²³⁸ U [see formulae (4), (5), (10) and (11)] https://standards.iteb.ai/catalog/standard				5 <u>:1</u> ds/s	292 Coefficients for the thermal fission of ²⁴¹ Pu [see formulae (4), (5), (10) and (11)] sist/cb737c49-c015-45df-a24c-			of ²⁴¹ Pu 1}]
j	$\alpha\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	$\beta\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	cc38((\$69)6ac/iso	-1	0645-	$1992\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	$\beta\left(\frac{\text{MeV/s}}{\text{fission}}\right)$	λ (s ⁻¹)
1 2 3 4 5 6	0 1,231 1 1,148 6 7,070 1 × 10 ⁻¹ 2,520 9 × 10 ⁻¹ 7,187 0 × 10 ⁻²	$1,709 \ 6 \times 10^{-1} \\ 2,285 \ 0 \times 10^{-1} \\ 2,888 \ 7 \times 10^{-1} \\ 1,538 \ 5 \times 10^{-1} \\ 4,597 \ 1 \times 10^{-2} \\ 1,575 \ 4 \times 10^{-2} $	$\begin{array}{c} 2,905 \ 5\\ 3,288 \ 1\\ 9,380 \ 5\times 10^{-1}\\ 3,707 \ 3\times 10^{-1}\\ 1,111 \ 8\times 10^{-1}\\ 3,614 \ 3\times 10^{-2} \end{array}$		1 2 3 4 5 6	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$\begin{array}{c} 0 \\ 3,486 \ 0 \times 10^{-2} \\ 2,475 \ 0 \times 10^{-2} \\ 7,211 \ 0 \times 10^{-3} \\ 3,126 \ 0 \times 10^{-3} \\ 1,481 \ 9 \times 10^{-3} \end{array}$	$2,200 0$ $1,022 3$ $2,813 5 \times 10^{-1}$ $1,092 0 \times 10^{-1}$ $4,285 7 \times 10^{-2}$ $1,428 6 \times 10^{-2}$
7 8 9 10 11 12	$2,829 \ 1 \times 10^{-2}$ $6,838 \ 2 \times 10^{-3}$ $1,232 \ 2 \times 10^{-3}$ $6,840 \ 9 \times 10^{-4}$ $1,697 \ 5 \times 10^{-4}$ $2,418 \ 2 \times 10^{-5}$	$2,926 \ 0 \times 10^{-3} 4,272 \ 0 \times 10^{-4} 7,993 \ 5 \times 10^{-5} 3,230 \ 9 \times 10^{-5} 1,040 \ 8 \times 10^{-5} 1,203 \ 3 \times 10^{-6}$	$1.327 \ 2 \times 10^{-2} 5.013 \ 3 \times 10^{-3} 1.365 \ 5 \times 10^{-3} 5.515 \ 8 \times 10^{-4} 1.787 \ 3 \times 10^{-4} 4.903 \ 2 \times 10^{-5} $		7 8 9 10 11 12	$\begin{array}{c} 4.923 \ 6 \times 10^{-3} \\ 7,000 \ 4 \times 10^{-4} \\ 1,298 \ 9 \times 10^{-3} \\ -2,354 \ 0 \times 10^{-4} \\ 5,846 \ 6 \times 10^{-4} \\ 6,506 \ 6 \times 10^{-5} \end{array}$	$\begin{array}{c} 2.461 \ 8 \times 10^{-4} \\ 3.500 \ 2 \times 10^{-5} \\ 6.494 \ 5 \times 10^{-5} \\ -1.177 \ 0 \times 10^{-5} \\ 2.923 \ 3 \times 10^{-5} \\ 3.253 \ 3 \times 10^{-6} \end{array}$	$5,191 3 \times 10^{-3} 1,568 6 \times 10^{-3} 1,069 4 \times 10^{-3} 5,388 3 \times 10^{-4} 3,615 4 \times 10^{-5} 9,215 9 \times 10^{-5}$
13 14 15 16 17 18	$\begin{array}{c} 6,635 \ 6\times 10^{-6} \\ 1,007 \ 5\times 10^{-6} \\ 4,989 \ 4\times 10^{-7} \\ 1,635 \ 2\times 10^{-7} \\ 2,335 \ 5\times 10^{-8} \\ 2,809 \ 4\times 10^{-9} \end{array}$	$\begin{array}{r} 3,211 \ 5\times \ 10^{-7} \\ 4,065 \ 1\times \ 10^{-8} \\ 1,764 \ 0\times \ 10^{-8} \\ 5,777 \ 0\times \ 10^{-9} \\ 9,010 \ 3\times \ 10^{-10} \\ 1,194 \ 1\times \ 10^{-10} \end{array}$	$1,705 8 \times 10^{-5} 7,046 5 \times 10^{-6} 2,319 0 \times 10^{-8} 6,448 0 \times 10^{-7} 1,264 9 \times 10^{-7} 2,554 8 \times 10^{-8} $		13 14 15 16 17 18	$\begin{array}{r} -5,184 \ 0 \times 10^{-5} \\ 5,686 \ 1 \times 10^{-5} \\ 1,896 \ 2 \times 10^{-6} \\ 4,410 \ 8 \times 10^{-7} \\ 1,646 \ 0 \times 10^{-7} \\ 4,226 \ 3 \times 10^{-10} \end{array}$	$\begin{array}{c} -2,592 \ 0 \times 10^{-6} \\ 2,843 \ 1 \times 10^{-6} \\ 9,481 \ 0 \times 10^{-8} \\ 2,205 \ 4 \times 10^{-8} \\ 8,230 \ 0 \times 10^{-9} \\ 2,113 \ 1 \times 10^{-11} \end{array}$	$\begin{array}{r} 3,479 \ 3 \times 10^{-5} \\ 3,113 \ 2 \times 10^{-5} \\ 7,922 \ 6 \times 10^{-6} \\ 2,252 \ 2 \times 10^{-6} \\ 6,294 \ 3 \times 10^{-7} \\ 2,041 \ 9 \times 10^{-7} \end{array}$
19 20 21 22 23 24	$3,623 6 \times 10^{-11}$ $6,457 7 \times 10^{-11}$ $4,496 3 \times 10^{-14}$ $3,665 4 \times 10^{-16}$ $5,629 3 \times 10^{-17}$ $7,160 2 \times 10^{-17}$	$\begin{array}{c} 3,262 \ 0 \times 10^{-12} \\ 3,221 \ 3 \times 10^{-12} \\ 2,256 \ 0 \times 10^{-15} \\ 1,835 \ 8 \times 10^{-17} \\ 2,810 \ 7 \times 10^{-18} \\ 3,575 \ 0 \times 10^{-18} \end{array}$	$\begin{array}{c} 8,478 \ 2 \times 10^{-9} \\ 7,513 \ 0 \times 10^{-10} \\ 2,418 \ 8 \times 10^{-10} \\ 2,273 \ 9 \times 10^{-13} \\ 9,053 \ 6 \times 10^{-14} \\ 5,609 \ 8 \times 10^{-15} \end{array}$		19 20 21 22 23 24	$1,677 \ 2 \times 10^{-8} \\ -4,632 \ 0 \times 10^{-10} \\ 3,878 \ 4 \times 10^{-9} \\ 1,048 \ 1 \times 10^{-10} \\ -1,791 \ 0 \times 10^{-12} \\ 5,247 \ 6 \times 10^{-11} \\ \end{bmatrix}$	$\begin{array}{c} 8,386 \ 0 \times 10^{-10} \\ -2,316 \ 0 \times 10^{-11} \\ 1,939 \ 2 \times 10^{-10} \\ 5,240 \ 5 \times 10^{-12} \\ -8,955 \ 0 \times 10^{-14} \\ 2,623 \ 8 \times 10^{-12} \end{array}$	$1,245 3 \times 10^{-7} 4,194 1 \times 10^{-8} 2,479 1 \times 10^{-8} 1,154 7 \times 10^{-8} 3,875 9 \times 10^{-9} 7,444 0 \times 10^{-10}$