

Edition 4.0 2016-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

Vehicles, boats and internal combustion engines F Radio disturbance characteristics – Limits and methods of measurement for the protection of on-board receivers

Véhicules, bateaux et moteurs à combustion interne — Caractéristiques des perturbations radioélectriques — Limites et méthodes de mesure pour la protection des récepteurs embarqués

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications. 59b6b2ab107

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms, containing 20,000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 15 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

65 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 4.0 2016-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE COMITÉ INTERNATIONAL SPÉCIAL DES PERTURBATIONS RADIOÉLECTRIQUES

Vehicles, boats and internal combustion engines E Radio disturbance characteristics – Limits and methods of measurement for the protection of on-board receivers

CISPR 25:2016

Véhicules, bateaux et moteurs à combustion interne - Caractéristiques des perturbations radioélectriques l'imités et méthodes de mesure pour la protection des récepteurs embarqués

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 33.100.10, 33.100.20

ISBN 978-2-8322-3726-7

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	REWO	RD	8
IN	TRODU	CTION	10
1	Scop	e	11
2	Norm	ative references	12
3	Term	s and definitions	13
4	Requ	irements common to vehicle and component/module emissions	
•	meas	urements	17
	4.1	General test requirements	17
	4.1.1	Categories of disturbance sources (as applied in the test plan)	17
	4.1.2	Test plan	17
	4.1.3	Determination of conformance of equipment under test (EUT) with limits	17
	4.1.4	Operating conditions	18
	4.1.5	Test report	19
	4.2	Shielded enclosure	19
	4.3	Absorber-lined shielded enclosure (ALSE)	19
	4.3.1	General	19
	4.3.2	Size	19
	4.3.3	Objects in ALSESTANDARD PREVIEW	19
	4.3.4	ALSE performance validation	20
	4.4	Measuring instrument Stanuarus. Item.al)	20
	4.4.1	General	20
	4.4.2	Spectrum analyser, parameters	20
	4.4.3	Scanning receiver parameters 07/cispr-25-2016	23
	4.5	Power supply	25
5	Meas	urement of emissions received by an antenna on the same vehicle	26
	5.1	Antenna measuring system	26
	5.1.1	Type of antenna	26
	5.1.2	Measuring system requirements	26
	5.2	Method of measurement	28
	5.3	Test setup for vehicle in charging mode	30
	5.3.1	General	30
	5.3.2	AC power charging without communication	30
	5.3.3	AC or DC power charging with communication line(s) or with signal line(s)	33
	5.4	Examples of limits for vehicle radiated disturbances	37
6	Meas	urement of components and modules	39
	6.1	General	39
	6.2	Test equipment	39
	6.2.1	Reference ground plane	39
	6.2.2	Power supply and AN	40
	6.2.3	Load simulator	40
	6.3	Conducted emissions from components/modules – Voltage method	41
	6.3.1	General	41
	6.3.2	Test setup	41
	6.3.3	Test procedure	42

6.3.4	Limits for conducted disturbances from components/modules – Voltage method	46
6.4 Co	nducted emissions from components/modules – Current probe method	49
6.4.1	Test setup	49
6.4.2	Test procedure	49
6.4.3	Limits for conducted disturbances from components/modules – Current probe method	52
6.5 Ra	diated emissions from components/modules – ALSE method	54
6.5.1	General	54
6.5.2	Test setup	54
6.5.3	Test procedure	57
6.5.4	Limits for radiated disturbances from components/modules – ALSE method	62
6.6 Ra	diated emissions from components/modules – TEM cell method	65
6.7 Ra	diated emissions from components/modules – Stripline method	65
Annex A (info	ormative) Flow chart for checking the applicability of CISPR 25	66
Annex B (nor	mative) Antenna matching unit – Vehicle test	67
R 1 Δn	tenna matching unit parameters (150 kHz to 6.2 MHz)	67
B2 An	tenna matching unit – Verification	07
B 2 1	General	07
B 2 2		07
B 2 3	Test procedure	07
B 3 Im	pedance measurement and ards. iteh.ai)	67
Annex C (info	prmative) Sheath-current suppressor	69
	neral information <u>CISPR 25:2016</u>	60
	https://standards.iteh.ai/catalog/standards/sist/ee6ae1c2-52b6-4045-a9a2-	60
Annex D (info	pressor construction 59662a5f07/ctspr-25-2016 prmative) Guidance for the determination of the noise floor of active nas in the AM and FM range	70
Annex E (nor asymmetric a	mative) Artificial networks (AN), artificial mains networks (AMN) and rtificial networks (AAN)	73
E.1 Ge	neral	73
E.2 Art	ificial networks (AN)	73
E.2.1	Component powered by LV	73
E.2.2	Component powered by HV	75
E.2.3	Component involved in charging mode connected to DC power mains	77
E.2.4	Vehicle in charging mode connected to DC power mains	77
E.3 Art	ificial mains networks (AMN)	77
E.3.1	Component AMN	77
E.3.2	Vehicle in charging mode connected to AC power mains	77
E.4 As	ymmetric artificial network (AAN)	78
E.4.1	General	78
E.4.2	Symmetric communication lines	78
E.4.3	PLC on power lines	79
E.4.4	PLC (technology) on control pilot	80
Annex F (info method	ormative) Radiated emissions from components/modules – TEM cell	82
F.1 Ge	neral	82
F.2 Te	st setup	83
F.2.1	Setup with major field emission from the wiring harness	83

F.2.2	Setup with major field emissions from the EUT	84
F.2.3	Power supply and AN	84
F.2.4	Signal/control line filters	85
F.3	Test procedure	86
F.4	Limits for radiated disturbances from components/modules – TEM cell	
	method	87
F.5	TEM cell design	89
Annex G ((informative) Radiated emissions from components/modules – Stripline	01
	Canada	
	General	91
G.2		91
G.2.1	Stripling impodance matching	91
G.2.2	Suppline impedance matching	91
G.2.0	Location and length of the test harness	92
0.2.4	Location of the lead simulator	92
0.2.0		92
G.3	Limits for radiated emissions from components/modules. Stripling method	92
G.4 G.5	Stripline design	06
G.J Annev H ((informative) Interference to mobile radio communication in the presence of	90
impulsive	noise – Methods of judging degradation	99
Н 1	General	99
H 2	Survey of methods of indding degradation to radio channel	99
н 2 1	General	99
H 2 2	Subjective tests CISPR 25:2016	99
H 2 3	Objective fests iteh ai/catalog/standards/sist/ee6ae1c2-52b6-4045-a9a2-	100
H.2.4	59b6b2af5f07/cispr-25-2016 Conclusions relating to judgement of degradation	
Annex I (r	normative) Test methods for shielded power supply systems for high voltages	
in electric	and hybrid vehicles	102
I.1	General	102
1.2	Conducted emission from components/modules on HV power lines – Voltage method	102
1.2.1	Ground plane arrangement	102
1.2.2	Test set-up	
1.2.3	Limits for conducted emission – Voltage method	
1.3	Conducted emission from components/modules on HV power lines – current	
	probe method	110
I.3.1	Reference ground plane arrangement	110
1.3.2	Test setup	110
1.3.3	Limits for conducted emission – current probe method	115
1.4	Radiated emissions from components/modules – ALSE method	115
I.4.1	Reference ground plane arrangement	115
1.4.2	Test setup	115
1.4.3	Limits for radiated emissions – ALSE method	120
1.5	Coupling between HV and LV systems	120
I.5.1	General	120
1.5.2	Measurement based on test setups defined in Clause 6	120
1.5.3	Measurement of the HV-LV coupling attenuation	126
Annex J (informative) ALSE performance validation 150 kHz to 1 GHz	129
J.1	General	129

J.2	Reference measurement method	131
J.2.1	Overview	131
J.2.2	Equipment	131
J.2.3	Procedure	133
J.2.4	Requirements	137
J.3	Modelled long wire antenna method	137
J.3.1	Overview	137
J.3.2	Equipment	138
J.3.3	Procedure	140
J.3.4	Requirements	149
Annex K (informative) Items under consideration	151
K.1	General	151
K.2	Measurement techniques and limits	151
K.3	Measurement uncertainty	151
K.4	Reconsideration of the Scope of the standard	151
K.5	Digital Service bands	151
K.6	Reorganizing the document into separate parts similar to CISPR-16	151
Bibliograp	hv	152
Bibliograp		
Figure 1 -	Method of determination of conformance for all frequency bands	18
Figure 2 -	Example of gain curve	27
Figure 3 – monopole	Vehicle-radiated emissions – Example for test layout (end view with antenna)	29
Figure 4 -	Example of test setup for vehicle with plug located on vehicle side (AC	
powered v	vithout communication)	31
Figure 5 – powered v	Example of test setup for vehicle with plug located front / rear of vehicle (AC vithout communication)	32
Figure 6 – DC power	Example of test setup for vehicle with plug located on vehicle side (AC or ed with communication)	35
Figure 7 – or DC pow	Example of test setup for vehicle with plug located front /rear of vehicle (AC //rear with communication)	36
Figure 8 -	Average limit for radiated disturbance from vehicles	39
Figure 9 – line remot	Conducted emissions – Example of test setup for EUT with power return ely grounded	43
Figure 10 line locally	 Conducted emissions – Example of test setup for EUT with power return grounded 	44
Figure 11 generators	– Conducted emissions – Example of test setup for alternators and	45
Figure 12 componer	 Conducted emissions – Example of test setup for ignition system ts 	46
Figure 13 measurem	 Conducted emissions – Example of test setup for current probe nents 	51
Figure 14	 Test harness bending requirements 	56
Figure 15	– Example of test setup – Rod antenna	58
Figure 16	- Example of test setup - Riconical antenna	50
Figure 17	Example of test setup - Log periodic antenno	00 مم
	- Example of test setup - Log-periodic antenna	00
Figure 18	– Example of test setup – Above 1 GHZ	61
Figure 19	 Example of average limit for radiated disturbances from components 	64

Figure A.1 – Flow chart for checking the applicability of this standard	66
Figure B.1 – Verification setup	68
Figure C.1 – Characteristic S ₂₁ of the ferrite core	69
Figure D.1 – Vehicle test setup for equipment noise measurement in the AM/FM range	71
Figure D.2 – Vehicle test setup for antenna noise measurement in the AM/FM range	72
Figure E.1 – Example of 5 μ H AN schematic	74
Figure E.2 – Characteristics of the AN impedance Z _{PB}	74
Figure E.3 – Example of 5 μ H HV AN schematic	76
Figure E.4 – Example of 5 μ H HV AN combination in a single shielded box	76
Figure E.5 – Impedance matching network attached between HV ANs and EUT	77
Figure E.6 – Example of an AAN for symmetric communication lines	79
Figure E.7 – Example of AAN circuit of PLC on AC or DC powerlines	80
Figure E.8 – Example of an AAN circuit for PLC on pilot line	81
Figure F.1 – TEM cell (example)	82
Figure F.2 – Example of arrangement of leads in the TEM cell and to the connector panel	83
Figure F.3 – Example of the arrangement of the connectors, the lead frame and the dielectric support	84
Figure F.4 – Example for the required minimum attenuation of the signal / control line filters	85
Figure F.5 – Setup for measurement of the filter attenuation	85
Figure F.6 – Example of the TEM cell method test setup	86
Figure F.7 – TEM cellos://standards.itch.ai/catalog/standards/sist/ce6ae1c2-52b6-4045-a9a2	89
Figure G.1 – Example of a basic stripline test setup in a shielded enclosure	93
Figure G.2 – Example for a 50 Ω stripline	97
Figure G.3 – Example for a 90 Ω stripline	98
Figure I.1 – Conducted emission – Example of test setup for EUTs with shielded power supply systems	105
Figure I.2 – Conducted emission – Example of test setup for EUTs with shielded power supply systems with electric motor attached to the bench	106
Figure I.3 – Conducted emission – Example of test setup for EUTs with shielded power supply systems and inverter/charger device	107
Figure I.4 – Conducted emission – Example of test setup current probe measurement on HV lines for EUTs with shielded power supply systems	112
Figure I.5 – Conducted emission – Example of test setup current probe measurement on HV lines for EUTs with shielded power supply systems with electric motor attached to the bench	113
Figure I.6 – Conducted emission – Example of test setup current probe measurement on HV lines for EUTs with shielded power supply systems and inverter/charger device	114
Figure I.7 – Radiated emission – Example of test setup measurement with biconical antenna for EUTs with shielded power supply systems	117
Figure I.8 – Radiated emission – Example of test setup measurement with biconical antenna for EUTs with shielded power supply systems with electric motor attached to the bench	118
Figure I.9 – Radiated emission – Example of test setup measurement with biconical antenna for EUTs with shielded power supply systems and inverter/charger device	119
Figure I.10 – Test setup for calibration of the test signal	121

Figure I.11 – Example of test setup for conducted emissions – Voltage method – Measurement on LV ports with injection on HV supply ports	122
Figure I.12 – Example of test setup for conducted emissions – Current probe method – Measurement on LV ports with injection on HV supply ports	123
Figure I.13 – Example of test setup for radiated emissions – ALSE method – Measurement with biconical antenna with injection on HV supply ports	125
Figure I.14 – Test setup for EUT S21 measurements	127
Figure I.15 – Examples of requirements for coupling attenuation, $a_{\rm C}$	128
Figure J.1 – Examples of typical ALSE influence parameters over the 10 MHz to 100 MHz frequency range	130
Figure J.2 – Visual representation of ALSE performance validation process	131
Figure J.3 – Example of construction of a transmitting monopole	132
Figure J.4 – Side view of the antenna configuration for reference measurement below 30 MHz	134
Figure J.5 – Top view of antenna configuration for reference measurement 30 MHz and above (with the biconical antenna shown as example)	135
Figure J.6 – Side view of antenna configuration for reference measurement 30 MHz and above (with the biconical antenna shown as example)	135
Figure J.7 – Top view of antenna configuration for the ALSE measurement below 30 MHz	136
Figure J.8 – Metallic sheet angles used as support for the rod	139
Figure J.9 – Radiator side view 50 Ω terminations	139
Figure J.10 – Photo of the radiator mounted on the ground reference plane	139
Figure J.11 – Example VSWR measured from four (radiation sources (without 10 dB attenuator)https://standards.iteh.ai/catalog/standards/sist/ce6ac1c2-52b6-4045-a9a2	140
Figure J.12 – Example setup for ALSE equivalent field strength measurement (rod antenna shown for the frequency range below 30 MHz)	142
Figure J.13 – MoM-modell for the frequency range 30 MHz to 200 MHz	144
Table 1 – Spectrum analyser parameters	22
Table 2 – Scanning receiver parameters	24
Table 3 – Antenna types	26
Table 4 – Example for limits of disturbance – Complete vehicle	37
Table 5 – Examples of limits for conducted disturbances – Voltage method	48
Table 6 – Examples of limits for conducted disturbances – Current probe method	53
Table 7 – Examples of limits for radiated disturbances – ALSE method	63
Table E.1 – Magnitude of the AN impedance Z _{PB}	75
Table F.1 – Examples of limits for radiated disturbances – TEM cell method	88
Table F.2 – Dimensions for TEM cells	90
Table G.1 – Examples of limits for radiated disturbances – Stripline method	95
Table I.1 – Example for HV limits for conducted voltage measurements at shielded power supply devices (HV-LV decoupling class A5)	109
Table I.2 – Example of configurations for equipment without negative LV line	127
Table I.3 – Example of configurations for equipment with negative LV line	127
Table I.4 – Examples of requirements for minimum coupling attenuation, <i>a</i> _C	128
Table J.1 – Reference data to be used for chamber validation	145

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

VEHICLES, BOATS AND INTERNAL COMBUSTION ENGINES – RADIO DISTURBANCE CHARACTERISTICS – LIMITS AND METHODS OF MEASUREMENT FOR THE PROTECTION OF ON-BOARD RECEIVERS

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. CISPR 25:2016
- 4) In order to promote tinternationals uniformity tec. National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard CISPR 25 has been prepared by CISPR subcommittee D: Electromagnetic disturbances related to electric/electronic equipment on vehicles and internal combustion engine powered devices.

This fourth edition cancels and replaces the third edition published in 2008. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) inclusion of charging mode for electric vehicles (EV) and plug-in electric vehicles (PHEV),
- b) the methods for chamber validation have been included,

- c) test methods for shielded power supply systems for high voltages for electric and hybrid electric vehicles have been included,
- d) overall improvement.

The text of this standard is based on the following documents:

FDIS	Report on voting
CISPR/D/432/FDIS	CISPR/D/435/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW

The contents of the corrigendum of October 2017 have been included in this copy. (standards.iteh.al)

CISPR 25:2016

IMPORTANT – The colour inside logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

This International Standard is designed to protect on-board receivers from disturbances produced by conducted and radiated emissions arising in a vehicle.

Test procedures and limits given are intended to provide provisional control of vehicle radiated emissions, as well as component/module conducted/radiated emissions of long and short duration.

To accomplish this end, this standard:

- establishes a test method for measuring the electromagnetic emissions from the electrical system of a vehicle;
- sets limits for the electromagnetic emissions from the electrical system of a vehicle;
- establishes test methods for testing on-board components and modules independent from the vehicle;
- sets limits for electromagnetic emissions from components to prevent objectionable disturbance to on-board receivers;
- classifies automotive components by disturbance duration to establish a range of limits.

NOTE Component tests are not intended to replace vehicle tests. Exact correlation between component and vehicle test performance is dependent on component mounting location, harness length, routing and grounding, as well as antenna location. Components can be evaluated with component testing prior to actual vehicle availability.

(standards.iteh.ai)

CISPR 25:2016 https://standards.iteh.ai/catalog/standards/sist/ee6ae1c2-52b6-4045-a9a2-59b6b2af5f07/cispr-25-2016

VEHICLES, BOATS AND INTERNAL COMBUSTION ENGINES – RADIO DISTURBANCE CHARACTERISTICS – LIMITS AND METHODS OF MEASUREMENT FOR THE PROTECTION OF ON-BOARD RECEIVERS

1 Scope

This International Standard contains limits and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 2 500 MHz. The standard applies to any electronic/electrical component intended for use in vehicles, trailers and devices. Refer to International Telecommunications Union (ITU) publications for details of frequency allocations. The limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/modules in the same vehicle. The method and limits for a complete vehicle (whether connected to the power mains for charging purposes or not) are in Clause 5 and the methods and limits for components/modules are in Clause 6. Only a complete vehicle test can be used to determine the component compatibility with respect to a vehicle's limit.

The receiver types to be protected are, for example, broadcast receivers (sound and television), land mobile radio, radio telephone, amateur, citizens' radio, Satellite Navigation (GPS etc.), Wi-Fi and Bluetooth. For the purpose of this standard, a vehicle is a machine, which is self-propelled by an internal combustion engine, electric means, or both. Vehicles include (but are not limited to) passenger cars; trucks, agricultural tractors and snowmobiles. Annex A provides guidance in determining whether this standard is applicable to particular equipment.

CISPR 25:2016

This International Standards.itch.ai/catalog/standards/sist/ee6ae1c2-52b6-4045-a9a2-This International Standard does not include protection of electronic control systems from radio frequency (RF) emissions or from transient or pulse-type voltage fluctuations. These subjects are included in ISO publications.

The limits in this standard are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier. This standard is also intended to be applied by manufacturers and suppliers of components and equipment which are to be added and connected to the vehicle harness or to an on-board power connector after delivery of the vehicle.

Since the mounting location, vehicle body construction and harness design can affect the coupling of radio disturbances to the on-board radio, Clause 6 of this standard defines multiple limit levels. The level class to be used (as a function of frequency band) is agreed upon between the vehicle manufacturer and the component supplier.

This standard defines test methods for use by Vehicle Manufacturers and Suppliers, to assist in the design of vehicles and components and ensure controlled levels of on-board radio frequency emissions.

Vehicle test limits are provided for guidance and are based on a typical radio receiver using the antenna provided as part of the vehicle, or a test antenna if a unique antenna is not specified. The frequency bands that are defined are not applicable to all regions or countries of the world. For economic reasons, the vehicle manufacturer is free to identify what frequency bands are applicable in the countries in which a vehicle will be marketed and which radio services are likely to be used in that vehicle.

As an example, many vehicle models will probably not have a television receiver installed; yet the television bands occupy a significant portion of the radio spectrum. Testing and mitigating noise sources in such vehicles is not economically justified.

The vehicle manufacturer should define the countries in which the vehicle is to be marketed, then choose the applicable frequency bands and limits. Component test parameters can then be selected from this standard to support the chosen marketing plan.

The World Administrative Radio communications Conference (WARC) lower frequency limit in region 1 was reduced to 148,5 kHz in 1979. For vehicular purposes, tests at 150 kHz are considered adequate. For the purposes of this standard, test frequency ranges have been generalized to cover radio services in various parts of the world. Protection of radio reception at adjacent frequencies can be expected in most cases.

Annex E defines artificial networks used for the measurement of conducted disturbances and for tests on vehicles in charging mode.

Annex H defines a qualitative method of judging the degradation of radio communication in the presence of impulsive noise.

Annex I defines test methods for shielded power supply systems for high voltage networks in electric and hybrid vehicles.

Annex J defines methods for the validation of the ALSE and the reference ground plane used for component testing.

Annex K lists work being considered for future revisions.

iTeh STANDARD PREVIEW

2 Normative references (standards.iteh.ai)

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. 59b6b2al507/cispr-25-2016

CISPR 16-1-1:2015, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-1-2:2014, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measuring apparatus – Coupling devices for conducted disturbance measurements

CISPR 16-1-4:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus –Antennas and test sites for radiated disturbances measurements CISPR 16-1-4:2010/AMD1:2012

CISPR 16-2-1:2014, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-1: Methods of measurement of disturbances and immunity – Conducted disturbance measurements

ISO 7637-3:2016, Road vehicles – Electrical disturbances from conduction and coupling – Part 3: Electrical transient transmission by capacitive and inductive coupling via lines other than supply lines

ISO 11452-4:2011, Road vehicles – Component test methods for electrical disturbances from narrowband radiated electromagnetic energy – Part 4: Harness excitation methods

SAE ARP 958.1 Rev D: 2003-02, *Electromagnetic Interference Measurement Antennas; Standard Calibration Method*

Terms and definitions 3

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

absorber lined shielded enclosure ALSE

shielded enclosure with radio frequency-absorbing material on its internal ceiling and walls

Note 1 to entry: This note applies to the French language only.

3.2

antenna factor

factor which is applied to the voltage measured at the input connector of the measuring instrument to give the field strength at the antenna

3.3

antenna matching unit

unit for matching the impedance of an antenna to that of the 50 Ω measuring instrument over the antenna measuring frequency range (standards.iteh.ai)

3.4

artificial mains network

CISPR 25:2016

AMN https://standards.iteh.ai/catalog/standards/sist/ee6ae1c2-52b6-4045-a9a2-

network that provides a defined impedance to the EUT at radio frequencies, couples the disturbance voltage to the measuring receiver and decouples the test circuit from the supply mains

Note 1 to entry: There are two basic types of AMN, the V-network (V-AMN) which couples the unsymmetrical voltages, and the delta-network which couples the symmetric and the asymmetric voltages separately. The terms line impedance stabilization network (LISN) and V-AMN are used.

Note 2 to entry: Network inserted in the power mains of the vehicle in charging mode or of a component (e.g. charger) which provides, in a given frequency range, a specified load impedance and which isolates the vehicle / component from the power mains in that frequency range.

Note 3 to entry: This note applies to the French language only.

3.5 artificial network AN

network inserted in the supply lead or signal/load lead of an apparatus to be tested which provides, in a given frequency range, a specified load impedance for the measurement of disturbance voltages and which may isolate the apparatus from the supply or signal sources/loads in that frequency range

Note 1 to entry: Network inserted in the d.c power lines of the vehicle in charging mode which provides, in a given frequency range, a specified load impedance and which isolates the vehicle from the d.c power supply in that frequency range.

Note 2 to entry: This note applies to the French language only.