## INTERNATIONAL STANDARD

ISO 10697-2

> First edition 1994-02-01

# Steel — Determination of calcium content by flame atomic absorption spectrometry —

### iTeh STANDARD PREVIEW

Determination of total calcium content

ISO 10697-2:1994

https://standards.incheirsataloposage ou calcium par spectrometrie d'absorption atomique dans la flamme 10697-2-1994

Partie 2: Dosage du calcium total



#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10697-2 was prepared by Technical Committee ISO/TC 17, Steel, Subcommittee SC 1, Methods of determination of chemical composition.

ISO 10697-2:1994

ISO 10697 consists of the following parts, under the general title Steel — Determination of calcium content by flame atomic absorption spectrometry:

- Part 1: Determination of acid-soluble calcium content
- Part 2: Determination of total calcium content

Annex A forms an integral part of this part of ISO 10697. Annexes B and C are for information only.

© ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

## Steel — Determination of calcium content by flame atomic absorption spectrometry —

#### Part 2:

Determination of total calcium content

#### 1 Scope

This part of ISO 10697 specifies a flame atomic absorption spectrometric method for the determination R ISO 5725:1986, Precision of test methods — Determination of the total calcium content in steel.

Standard test method by inter-laboratory tests.

The method is applicable to calcium contents between 0,000 5 % (m/m) and 0,005 % (m/m). ISO 10697-2:134 **Principle** 

https://standards.iteh.ai/catalog/standards/sist/428290a8-d660-48c4-b622-

4aae6421f11fiso-106Dissolution of a test portion in hydrochloric and nitric acids.

Specification and test methods.

#### 2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10697. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10697 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 377-2:1989, Selection and preparation of samples and test pieces of wrought steels — Part 2: Samples for the determination of the chemical composition.

ISO 385-1:1984, Laboratory glassware — Burettes — Part 1: General requirements.

ISO 648:1977, Laboratory glassware — One-mark pipettes.

ISO 1042:1983, Laboratory glassware — One-mark volumetric flasks.

Fusion of the acid-insoluble residue with sodium carbonate.

ISO 3696:1987, Water for analytical laboratory use —

Addition of potassium chloride/lanthanum nitrate solution as a spectrochemical buffer.

Spraying of the solution into a dinitrogen monoxideacetylene flame.

Spectrometric measurement of the atomic absorption of the 422,7 nm spectral line emitted by a calcium hollow cathode lamp.

#### 4 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade having very low calcium contents and only grade 2 water as specified in ISO 3696.

- **4.1 Pure iron**, containing less than 0,000 1 % (*m/m*) calcium.
- **4.2** Sodium carbonate, anhydrous, super pure.

ISO 10697-2:1994(E) © ISO

- 4.3 Suitable solvent, for example acetone or dichloromethane.
- **4.4** Hydrochloric acid,  $\rho$  about 1,19 g/ml.
- **4.5** Hydrochloric acid, ρ about 1,19 g/ml, diluted 1 + 1.
- **4.6** Hydrochloric acid,  $\rho$  about 1,19 g/ml, diluted 1 + 2.
- **4.7** Nitric acid,  $\rho$  about 1,40 g/ml.
- **4.8** Perchloric acid,  $\rho$  about 1,54 g/ml.
- **4.9** Hydrofluoric acid,  $\rho$  about 1,15 g/ml.
- 4.10 Potassium chloride/lanthanum nitrate, solution.

Dissolve 95,34 g of potassium chloride (KCI) and 62.35 a of lanthanum nitrate hexahydrate [La(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O] in water, dilute to 1,000 ml and mix.

4.11 Calcium, standard solutions.

Ca per litre.

4.11.1 Stock solution, corresponding to 100 mg of 1069 https://standards.iteh.ai/catalog/standa

4aae6421f11f/isc Dry several grams of calcium carbonate [purity  $\geq$  99,5 % (m/m) in an air oven et 100 °C for at least 1 h and cool to room temperature in a desiccator. Weigh 0,249 7 g of the dried product into a 400 ml beaker, cover with a watch-glass and add 5 ml of hydrochloric acid (4.5) to dissolve. Cool and transfer the solution to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this stock solution contains 100 μg of Ca.

**4.11.2 Standard solution**, corresponding to 10 mg of Ca per litre.

Transfer 10.0 ml of the stock solution (4.11.1) into a 100 ml one-mark volumetric flask and add 5 ml of hydrochloric acid ( $\rho$  about 1,19 g/ml, diluted 1 + 10). Dilute to the mark with water and mix.

Prepare this standard solution immediately before use.

1 ml of this standard solution contains 10 μg of Ca.

#### **Apparatus**

All volumetric glassware shall be class A, in accord-

ance with ISO 385-1, ISO 648 or ISO 1042, as appropriate.

Ordinary laboratory apparatus, and

- 5.1 Filter media, 0,22 µm pore size, 47 mm diameter cellulose-acetate filter.
- 5.2 Suction apparatus, i.e. a clean empty flask placed between the suction device and filtering flask to prevent any back suction and contamination.
- **5.3** Platinum crucible, of capacity 25 ml.
- **5.4** Muffle furnace, capable of being maintained at between 500 °C and 800 °C.
- 5.5 Atomic absorption spectrometer, equipped with a calcium hollow cathode lamp and supplied with dinitrogen monoxide and acetylene sufficiently pure to give a steady clear fuel-lean flame, free from water and oil, and free from calcium.

(standard The atomic absorption spectrometer used will be satisfactory if, after optimization according to 7.3.6, the limit of detection and characteristic concentration are in reasonable agreement with the values given by the manufacturer and if it meets the precision criteria given in 5.5.1 to 5.5.3.

> It is also desirable that the instrument should conform to the additional performance requirements given in 5.5.4.

#### **5.5.1 Minimum precision** (see A.1)

Calculate the standard deviation of 10 measurements of the absorbance of the most concentrated calibration solution. The standard deviation shall not exceed 1.5 % of the mean absorbance.

Calculate the standard deviation of 10 measurements of the absorbance of the least concentrated calibration solution (excluding the zero member). The standard deviation shall not exceed 0.5 % of the mean absorbance of the most concentrated calibration solution.

#### **5.5.2** Limit of detection (see A.2)

This is defined as twice the standard deviation of 10 measurements of the absorbance of a solution containing the appropriate element at a concentration level selected to give an absorbance just above that of the zero member.

The limit of detection of calcium in a matrix similar to the final test portion shall be better than 0,02  $\mu g$  of Ca per millilitre.

#### 5.5.3 Graph linearity (see A.3)

The slope of the calibration graph covering the top 20 % of the concentration range (expressed as a change in absorbance) shall not be less than 0,7 times the value of the slope for the bottom 20 % of the concentration range (expressed as a change in absorbance) determined in the same way.

For instruments with automatic calibration using two or more standards, it shall be established prior to the analysis, by obtaining absorbance readings, that the above requirements for graph linearity are fulfilled.

#### 5.5.4 Characteristic concentration (see A.4)

The characteristic concentration of calcium in a matrix similar to the final test portion solution shall be better than  $0.05 \mu g$  of Ca per millilitre.

## 5.6 Ancillary equipment iTeh STANDARI

A strip chart recorder and/or digital readout device is recommended to evaluate the criteria of 5.5 and for all subsequent measurements.

Scale expansion can be used until the noise observed and sist greater than the readout error and is always recommended for absorbances below 0,1. If scale expansion has to be used and the instrument does not have the means to read the value of the scale expansion factor, the value can be calculated by measuring the absorbances of a suitable solution with and without scale expansion and using the ratio of the signals obtained.

#### 6 Sampling

Carry out sampling in accordance with ISO 377-2 or appropriate national standards for steel.

#### 7 Procedure

WARNING — Perchloric acid vapour may cause explosions in the presence of ammonia, nitrous fumes or organic matter in general.

All glassware shall first be washed in hydrochloric acid (4.5), then in water. The calcium contamination from the glassware can be checked by measuring the absorption of water introduced into the glassware after washing with acid. If calcium contamination is present, the glassware is unsuitable and should be replaced.

For each series of blank, calibration and samples, all reagents, including water, shall be from the same batch.

#### 7.1 Test portion

Wash the test sample in a suitable solvent (4.3) and dry.

Weigh, to the nearest 0,001 g, approximately 2,0 g of the test sample.

#### 7.2 Blank test (see clause 9)

In parallel with the determination and following the same procedure, carry out a blank test using the same quantities of all the reagents used for the test portion.

#### 7.3 Determination

#### 7.3.1 Preparation of the test solution

Place the test portion (7.1) in a 400 ml beaker. Add 20 ml of hydrochloric acid (4.5), cover the beaker with a watch-glass and heat gently until solvent action ceases. Add 2 ml of nitric acid (4.7). Simmer the solution for 5 min to remove oxides of nitrogen.

#### 7.3.2 Filtration of the test solution

After placing a filter (5.1) in the suction apparatus (5.2) and flask, wash several times with warm hydrochloric acid (4.6) and then warm water. Discard the washings from the flask prior to filtration. Place a clean empty flask (see 5.2) between the suction device and the filtering flask, to prevent any back suction and contamination.

Filter the warm solution (below about 75 °C) through the filter (5.1) using the suction apparatus (5.2) and collect the filtrate in a clean flask. Rinse the beaker with a small volume of water. Remove adherent particles with a clean rubber-tipped rod and transfer to the filter by rinsing with small volumes of water. Wash the beaker and filter several times with a small volume of water.

Reserve the filtrate as the main solution.

#### 7.3.3 Treatment of the insoluble residue

Transfer the filter, after cautiously folding, into a platinum crucible (5.3). Ignite the platinum crucible containing the filter and residue in the muffle furnace (5.4) at 550 °C until all carbonaceous matter is removed, and then ignite in the muffle furnace at 800 °C for 20 min. Allow the crucible to cool. Moisten

ISO 10697-2:1994(E) © ISO

the residue with 2 to 3 drops of perchloric acid (4.8). Add 2 ml of hydrofluoric acid (4.9), and heat gently to dryness to remove silicon dioxide and perchloric acid. Allow the crucible to cool.

Add 0,500 g of sodium carbonate (4.2). Heat the crucible until it is dark red, swirling the crucible and fusing the residue. After cooling, add cautiously 5 ml of hydrochloric acid (4.4) and heat gently to dissolve the fused products. Rinse the crucible with a small volume of warm water and add the rinsings to the main solution (see 7.3.2).

Cool and transfer the combined solution at room temperature into a 100 ml one-mark volumetric flask. Add 10,0 ml of potassium chloride/lanthanum nitrate solution (4.10). Dilute to the mark with water and mix.

#### 7.3.4 Preparation of the calibration solutions

Place 2,00 g  $\pm$  0,01 g of the pure iron (4.1) in a series of seven 400 ml beakers. Add 20 ml of hydrochloric acid (4.5) to each beaker, cover each with a watchglass and heat until solvent action ceases. Add 2 ml of nitric acid (4.7). Simmer the solution for 5 min to A remove oxides of nitrogen.

Using the burette, add the volume of calcium standard solution (4.11.2) as indicated in table 1.

Proceed as specified in 7.3.2 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.iteh.ai/catalog/standards.aid=1.3.3.4 https://standards.aid=1.3.3.4 https://standards.aid=1.3.3 ht

## 7.3.5 Adjustment of atomic absorption spectrometer

See table 2.

Table 1

| Volume of calcium standard solution (4.11.2) | Corresponding concentration of calcium in final test solution | Corresponding<br>content of<br>calcium in<br>test sample |
|----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| ml                                           | μg/ml                                                         | % (m/m)                                                  |
| 01)                                          | 0                                                             | 0                                                        |
| 1,0                                          | 0,1                                                           | 0,000 5                                                  |
| 2,0                                          | 0,2                                                           | 0,001 0                                                  |
| 4,0                                          | 0,4                                                           | 0,002 0                                                  |
| 6,0                                          | 0,6                                                           | 0,003 0                                                  |
| 8,0                                          | 0,8                                                           | 0,004 0                                                  |
| 10,0                                         | 1,0                                                           | 0,005 0                                                  |
| 1) Zero member.                              |                                                               |                                                          |

## 7.3.6 Optimizing the atomic absorption spectrometer settings

Follow the manufacturer's instructions for preparing the instrument for use.

When the current to the lamp, the wavelength and the flow of gas have been adjusted and the burner lit, spray water until the indication has stabilized.

Set the absorbance value to zero using water.

Table 2

|    | Element                         | Characteristic                                                                                                                                             |  |
|----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Type of lamp                    | Calcium hollow cathode                                                                                                                                     |  |
|    | Wavelength                      | 422,7 nm                                                                                                                                                   |  |
|    | Flame                           | Dinitrogen monoxide-acetylene red-<br>feather flame                                                                                                        |  |
|    |                                 | The height of the red-feather flame shall<br>be 10 mm to 20 mm adjusted for maxi-<br>mum calcium response                                                  |  |
|    | Lamp current                    | Follow manufacturer's recommen-<br>dations                                                                                                                 |  |
| 9  | Bandwidth <b>a</b> 7-2:1994     | Follow manufacuter's recommendations. If no recommendation is given, a bandwidth between 0,3 nm and 1,0 nm is suggested                                    |  |
| 11 | Background a8<br>correction 994 | If the zero member gives an absorbance comparable with the precision of the least concentrated calibration solution, background correction may be required |  |

WARNING — The manufacturer's recommendations should be closely followed and particular attention is drawn to the following safety points:

- a) the explosive nature of acetylene, and regulations concerning its use;
- the need to shield the eyes of the operator from ultraviolet radiation by means of tinted glass;
- the need to keep the burner head clear of deposits because a badly clogged burner may cause a flashback;
- d) the need to ensure that the liquid trap is filled with water;
- e) the need always to spray water between the test solutions, blank solution and/or calibration solutions.

Choose a damping setting or integration time to give a signal steady enough to fulfil the precision criteria of 5.5.1 to 5.5.3.

Adjust the flame to be non-luminous and oxidizing with an approximate 10 mm to 20 mm of red feather. Spraying alternately the calibration solution of highest concentration and the zero member (see table 1), adjust the gas flow and burner position (horizontally, vertically and rotationally) until the difference in absorbance between the calibration solution is at a maximum. Check that the spectrometer is set accurately on the required wavelength.

Evaluate the criteria of 5.5.1 to 5.5.3 and the additional performance requirement of 5.5.4, to ensure that the instrument is suitable for the determination.

#### 7.3.7 Spectrometric measurements

Set the scale expansion so that the calibration solution of highest concentration gives nearly full scale de-RD flection. Spray the calibration solutions in ascending order repeatedly until each gives the specified preds.itehazi) is the absorbance of the zero member; cision, thus showing that the instrument has achieved stability. Select two calibration solutions, one having an absorbance just lower that the test portion solution and one just higher. Spray these first in ascending order, then in descending order, with the test solution as the middle solution, in each case measuring the absorption in relation to water.

Spray the complete set of calibration solutions, including the zero member again in ascending and descending order. The means of the last ascending and descending series of calibration solutions are used for the calibration graph.

It is recognized that these procedures cannot be followed with automatic instruments which accept two calibration solutions only. In this case, it is suggested that the two "sandwiching" solutions should not be used for the primary calibration but should be analysed alternately with the test solution.

Spray calibration solutions at frequent intervals during the measurement of a batch of determinations. Clean the burner if the results show loss of precision caused by clogging.

Obtain the mean absorbance of each calibration solution.

Obtain the mean absorbance of the test solution and the mean absorbance of the blank solution.

#### 7.4 Plotting the calibration graph

It is necessary to prepare a new calibration graph for each series of determinations.

If pure metals and reagents have been used, the blank test and zero member should give very small absorbance readings with a negligibly small difference. In this case, prepare a calibration graph by plotting the mean absorbance values of the calibration solutions against micrograms of calcium per millilitre.

If, however, the zero member has a significant absorbance, a more complicated procedure is required. In this case, the concentration of calcium  $\rho_{\text{Ca},\text{z}}$  in the zero member can be calculated using the

$$\rho_{\mathrm{Ca,z}} = \rho_{\mathrm{Ca,c1}} \times \frac{A_{\mathrm{z}}}{A_{\mathrm{Ca,c1}} - A_{\mathrm{z}}}$$

where

 $\rho_{\text{Ca,c1}}$  is the concentration of calcium, expressed in micrograms per millilitre, added to the first calibration solution;

 $A_{\text{Ca,c1}}$  is the absorbance of the first calibration rds/sist/428290a8-d660-48c4-l

1069 The derived value  $ho_{\mathsf{Ca,z}}$  is then added to each of the nominal calibration concentrations in order to obtain a mean calibration graph passing through the origin.

Refer the absorbances of two adjacent calibration solutions to the graph. If these two calibration readings do not deviate from the graph by more than the permitted precision criteria, then the test solution reading is also acceptable.

#### 8 Expression of results

#### 8.1 Method of calculation

Convert the absorbances of the test solution and the blank solution to micrograms of calcium per millilitre by reference to the calibration graph (7.4).

The calcium content  $w_{Ca}$ , expressed as a percentage by mass, is given by the equation

$$w_{\text{Ca}} = \frac{(\rho_{\text{Ca},1} - \rho_{\text{Ca},0}) \times 100}{10^6} \times \frac{100}{m}$$
$$= \frac{\rho_{\text{Ca},1} - \rho_{\text{Ca},0}}{100 \ m}$$

ISO 10697-2:1994(E) © ISO

where

is the concentration, expressed in micro $ho_{\mathsf{Ca},\mathsf{0}}$ grams per millilitre, of calcium in the blank test (7.2);

is the concentration, expressed in micro- $\rho_{\mathsf{Ca,1}}$ grams per millilitre, of calcium in the test solution (see 7.3.3);

m is the mass, in grams, of the test portion (7.1).

#### 8.2 Precision

A planned trial of this method was carried out by 10 laboratories. All laboratories made three determinations for total calcium on each of the test samples (see notes 1 and 2).

The test samples used are listed in table B.1.

The results obtained were treated statistically in accordance with ISO 5725.

The data obtained showed a logarithmic relationship between calcium content and repeatability (r) and reproducibility (R and  $R_W$ ) of the test results (see note 3), as summarized in table 3. The graphical representance dure h.ai) tation of the data is shown in figure C.1.

3 From the results obtained on day 1, the repeatability (r) and reproducibility (R) were calculated using the procedure specified in ISO 5725. From the first result obtained on day 1 and the result obtained on day 2, the within-laboratory reproducibility  $(R_{W})$  was calculated.

#### Notes on the procedure

To prevent contamination increasing the blank value, it is extremely important to use reagents as specified in clause 4, particularly concerning the properties of the water, acids, iron and sodium carbonate. The glassware must be pretreated as specified in clause 7. These precautions and a further requirement stated in clause 7: "For each series of blank, calibration and samples, all reagents, including water, shall be from the same batch", should result in a low and consistent blank value. In addition, the filtration procedure of the test solution, as specified in 7.3.2, is a precaution to minimize contamination during filtration.

Only the reagents for which the blank values are not greater than 0,05 µg/ml should be used in this pro-

ISO 10697-2:1994

Table 3 https://standards.iteh.ai/catalog/standards/sist/428290a8-d660-48c4-b622-4aae6421 f1 1 f/iso 1 0 697 Test report

Calcium Repeatability Reproducibility content % (m/m)R  $R_{W}$ 0,000 5 0,000 17 0,000 30 0,000 16 0,001 0 0,000 24 0,000 40 0,000 24 0,002 0 0,000 33 0,000 54 0,000 34 0,005 0 0,000 51 0,000 78 0,000 56

#### **NOTES**

- 1 Two of the three determinations were carried out under repeatability conditions as defined in ISO 5725, i.e. one operator, same apparatus, identical operating conditions, same calibration, and a minimum period of time.
- 2 The third determination was carried out at a different time (on a different day) by the same operator as in note 1 using the same apparatus with a new calibration.

The test report shall include the following information:

- a) all information necessary for the identification of the sample, the laboratory and the date of analysis;
- b) the method used by reference to this part of ISO 10697:
- the results, and the form in which they are expressed;
- d) any unusual features noted during the determination;
- e) any operation not specified in this part of ISO 10697, or any optional operation which may have influenced the results.

#### Annex A

(normative)

#### Procedures for the determination of instrumental criteria

For the preparation of standard methods of analysis using flame atomic absorption spectrometry, the values for the instrumental criteria should be decided from inter-laboratory test results, by the working group in charge.

#### A.1 Determination of minimum precision

Spray the most concentrated calibration solution 10 times to obtain 10 individual absorbance readings  $A_{Ai}$ and calculate the mean value  $\bar{A}_{\Delta}$ .

cluding the zero member) 10 times to obtain 10 indiply vidual absorbance readings  $A_{\rm Bi}$  and calculate the mean value  $\overline{A_{\rm B}}$ . (standards.itehai) value  $\overline{A}_{B}$ .

The standard deviations  $s_A$  and  $s_B$  of the most and least concentrated calibration solutions respectively  $A'_i$  is the individual measured absorbance readare obtained from the equations dards.iteh.ai/catalog/standards/sist/428290a8 in 960-48c4-b622-4aae6421f11f/iso-10697-2-1<u>99</u>4

$$s_{A} = \sqrt{\frac{\sum (A_{Ai} - \overline{A}_{A})^{2}}{9}}$$

$$s_{B} = \sqrt{\frac{\sum (A_{Bi} - \overline{A}_{B})^{2}}{9}}$$

The minimum precisions of the most and least concentrated calibration solutions are obtained from  $s_{\Delta} \times 100/\overline{A}_{\Delta}$  and  $s_{R} \times 100/\overline{A}_{\Delta}$ 

#### A.2 Determination of limit of detection, $\rho_{\text{Ca.min}}$

Prepare two solutions each containing the same matrix concentration as the sample solution, but with the element of interest at the following known concentrations:

- $\rho'_{Ca} \mu g/ml$  to give an absorbance A' of approximately 0,01;
- matrix blank to give an absorbance  $A_0$ .

Spray the  $\rho'_{Ca}$  solution and blank solution 10 times each, recording each reading for about 10 s, and using sufficient scale expansion to make the fluctuations in signal clearly visible.

Obtain the mean absorbance readings  $\overline{A}'$  and  $\overline{A}_0$ .

The standard deviation  $s_{A'}$  is given by the equation

The limit of detection  $\rho_{Ca,min}$  is given by the equation

 $\rho_{\text{Ca,min}} = \frac{\rho'_{\text{Ca}} \times s_{A'} \times k}{\overline{A}' - \overline{A}_{\Omega}}$ 

(k is normally taken as 2)

#### A.3 Criterion for graph linearity

is the mean value of  $A'_{i}$ .

Having established the calibration graph (see figure A.1), before the application of any curvestraightening device, obtain the net absorbance value  $A_{\Delta}$  corresponding to the top 20 % of the concentration range and the net absorbance  $A_{B}$  corresponding to the bottom 20 % of the concentration range. Calculate  $A_A/A_B$ . This must not be less than 0,7.